精英家教网 > 高中数学 > 题目详情
9.若tanα•tanβ=3,且$sinα•sinβ=\frac{3}{5}$,则cos(α-β)的值为(  )
A.$-\frac{2}{5}$B.$\frac{2}{5}$C.$\frac{4}{5}$D.1

分析 利用同角三角函数的基本关系,两角差的余弦公式,求得cos(α-β)的值.

解答 解:若tanα•tanβ=$\frac{sinα•sinβ}{cosα•cosβ}$=3,且$sinα•sinβ=\frac{3}{5}$,∴cosα•cosβ=$\frac{1}{5}$,
则cos(α-β)=cosα•cosβ+sinα•sinβ=$\frac{1}{5}$+$\frac{3}{5}$=$\frac{4}{5}$,
故选:C.

点评 本题主要考查同角三角函数的基本关系,两角差的余弦公式,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.某厂商调查甲、乙两种不同型号电视在10个卖场的销售量(单位:台),并根据这10个卖场的销售情况,得到如图所示的茎叶图.为了鼓励卖场,在同型号电视机的销售中,该厂商将销售量高于数据平均数的卖场命名为该型号电视机的“星级卖场”
(1)求在这10个卖场中,甲型号电视机的“星级卖场”的个数;
(2)若在这10个卖场中,乙型号电视机销售量的平均数为26.7,求a>b的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.若${({\sqrt{x}-\frac{1}{{\root{3}{x}}}})^n}$展开式中存在常数项,则n的最小值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.(Ⅰ)求证:$\sqrt{3}$+$\sqrt{7}$<2$\sqrt{5}$
(Ⅱ)若a,b,c是实数,求证:a2+b2+c2≥ab+bc+ca.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.若实数x,y满足约束条件$\left\{\begin{array}{l}{x≥0}\\{lg(y-1)≤0}\\{2x-y≤2}\end{array}\right.$,若a<$\frac{y}{x+1}$恒成立,则a的取值范围为(-∞,$\frac{2}{5}$].

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.有2个男生和2个女生一起乘车去抗日战争纪念馆参加志愿者服务,他们依次上车,则第二个上车的是女生的概率为(  )
A.$\frac{2}{3}$B.$\frac{1}{2}$C.$\frac{1}{3}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知变量x,y(x,y∈R)满足约束条件$\left\{{\begin{array}{l}{x-y≤0}\\{x+y≥5}\\{y-3≤0}\end{array}}\right.$,若不等式(x+y)2≥c(x2+y2)(c∈R)恒成立,则实数c的最大值为$\frac{25}{13}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知i是虚数单位,复数$z=\frac{a-i}{1-i}({a∈R})$,若|z|=1,则a=(  )
A.±1B.1C.-1D.$±\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.若变量x,y满足$\left\{{\begin{array}{l}{x≤3}\\{y≤x}\\{x+y≥4}\end{array}}\right.$,则z=2x-y的最大值是5.

查看答案和解析>>

同步练习册答案