【题目】某学校一位教师要去某地参加全国数学优质课比赛,已知他乘火车、轮船、汽车、飞机直接去的概率分别为0.3、0.1、0.2、0.4.
(1)求他乘火车或乘飞机去的概率;
(2)他不乘轮船去的概率;
【答案】(1)0.7(2)0.9
【解析】
试题设“乘火车去开会”为事件A,“乘轮船去开会”为事件B,“乘汽车去开会”为事件C,“乘飞机去开会”为事件D,并且根据题意可得:这四个事件是互斥事件,(1)根据概率的基本性质公式可得:P(A+D)=P(A)+P(D).(2)根据对立事件的概率公式可得他不乘轮船去的概率P=1-P(B).
记A=“他乘火车去”,B=“他乘轮船去”,C=“他乘汽车去”,D=“他乘飞机去”,由题意可知:P(A)=0.3,P(B)=0.1,P(C)=0.2,P(D)=0.4,且事件A、B、C、D两两互斥.
(1)“他乘火车或乘飞机去”即为事件A∪D.P(A∪D)=P(A)+P(D)=0.3+0.4=0.7,即他乘火车或乘飞机去的概率为0.7;(2)“他不乘轮船去”的事件为
,所以P(
)=1-P(B)=1-0.1=0.9,即他不乘轮船去的概率为0.9.
科目:高中数学 来源: 题型:
【题目】已知函数
的图像如图所示,关于
有以下5个结论:
![]()
(1)
;(2)
,
;(3)将图像上所有点向右平移
个单位得到的图形所对应的函数是偶函数;(4)对于任意实数x都有
;(5)对于任意实数x都有
;其中所有正确结论的编号是( )
A.(1)(2)(3)B.(1)(2)(4)(5)C.(1)(2)(4)D.(1)(3)(4)(5)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,一张矩形白纸ABCD,AB=10,AD=
,E,F分别为AD,BC的中点,现分别将△ABE,△CDF沿BE,DF折起,且A、C在平面BFDE同侧,下列命题正确的是____________(写出所有正确命题的序号)
![]()
①当平面ABE∥平面CDF时,AC∥平面BFDE
②当平面ABE∥平面CDF时,AE∥CD
③当A、C重合于点P时,PG⊥PD
④当A、C重合于点P时,三棱锥P-DEF的外接球的表面积为150![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在直角坐标系
中,曲线
上的点均在曲线
外,且对
上任意一点
,
到直线
的距离等于该点与曲线
上点的距离的最小值.
(1)求动点
的轨迹
的方程;
(2)若点
是曲线
的焦点,过
的两条直线
关于
轴对称,且分别交曲线
于
,若四边形
的面积等于
,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知数列{an}满足a1=
,an+1=3an-1(n∈N*).
(1)若数列{bn}满足bn=an-
,求证:{bn}是等比数列;
(2)求数列{an}的前n项和Sn.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com