精英家教网 > 高中数学 > 题目详情
为了研究患慢性气管炎与吸烟量的关系,调查了228人,其中每天的吸烟支数在10支以上的20支以下的调查者中,患者人数有98人,非患者人数有89人,每天的吸烟支数在20支以上的调查者中,患者人数有25人,非患者人数有16人.
(1)根据以上数据建立一个2×2的列联表;
(2)试问患慢性气管炎是否与吸烟量相互独立?
参考公式
P(K2≥k) 0.50 0.40 0.25 0.15 0.10 0.05 0.025 0.010 0.005 0.001
k 0.455 0.708 1.323 2.072 2.706 3.841 5.024 6.635 7.879 10.828
考点:独立性检验的应用
专题:计算题,概率与统计
分析:(1)根据每天的吸烟支数在10支以上的20支以下的调查者中,患者人数有98人,非患者人数有89人,每天的吸烟支数在20支以上的调查者中,患者人数有25人,非患者人数有16人,可得2×2的列联表;
(2)根据列联表中所给的数据,代入求观测值的公式,求出这组数据的观测值,把观测值同临界值表中的临界值进行比较,得到吸烟与患慢性气管炎的关系.
解答: 解:(1)根据已知数据建立2×2的列联表如下:…(4分)

   患者
吸烟量
患病者 非患病者 总计
10支以上20支以下 98 89 187
20支以上 25 16 41
总计 123 105 228
(2)假设“患慢性气管炎与吸烟量无关”,则…(5分)
k=
(ad-bc)2
(a+b)×(c+d)×(a+c)×(b+d)
=
228×(98×16-25×89)2
123×105×187×41
≈0.994
…(9分)
又∵k≈0.994>0.708
∴P(K2≥0.708)=0.40…(11分)
∴有40%的把握认为患慢性气管炎与吸烟量相互独立.
点评:本题考查独立性检验的应用即正确使用列联表所给的数据作出观测值,本题解题的关键是记住求观测值的公式,注意代入数据时不要弄错位置,理解观测值对应的临界值对应的概率的意义.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知an=4n-2,n∈N*如果执行如图所示程序框图,那么输出的S为(  )
A、12B、14C、72D、98

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
2
ax2-lnx,a∈R+
(Ⅰ)当a=1时,求函数f(x)的单调区间;
(Ⅱ)若函数f(x)在区间[1,e]的最小值为1,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

对一批产品的长度(单位:mm)进行抽样检测,检测结果的频率分布直方图如图所示,根据标准,产品长度在区间[20,25)上的为一等品,在区间[15,20)和区间[25,30)上的为二等品,在区间[10,15)和[30,35)上的为三等品.
(Ⅰ)用频率估计概率,现从这批产品中随机抽取一件,求其为二等品的概率;
(Ⅱ)已知检测结果为一等品的有6件,现随机从三等品中有放回地连续取两次,每次取1件,求取出的两件产品中恰好有一件的长度在区间[30,35)上的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

(1)若
1
4
t2
-kt-1≤0在t∈[-1,1]上恒成立,求实数k的取值范围,
(2)若
1
4
t2
-kt-1≤0在k∈[-1,1]上恒成立,求实数t的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设f(x)=
x2+x+a
x+1
,x∈[0,+∞).
(1)当a=2时,求f(x)的最小值;
(2)当0<a<1时,求f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

某购物网站在2013年11月开展“全场6折”促销活动,在11日当天购物还可以再享受“每张订单金额(6折后)满300元时可减免100元”.某人在11日当天欲购入原价48元(单价)的商品共42件,为使花钱总数最少,他最少需要下的订单张数为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列an
1
1
2
1
1
2
3
1
2
2
1
3
4
1
3
2
2
3
1
4
,…,依它的前10项的规律,则a99+a100的值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

将一个质点随机投放在三角形区域
x+y≤5
x≥1
y≥1
内,则该质点到此三角形的三个顶点的距离均不小于1的概率是
 

查看答案和解析>>

同步练习册答案