精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)在定义域[﹣1,1]是奇函数,当x∈[﹣1,0]时,f(x)=﹣3x2
(1)当x∈[0,1],求f(x);
(2)对任意a∈[﹣1,1],x∈[﹣1,1],不等式f(x)≤2cos2θ﹣asinθ+1都成立,求θ的取值范围.

【答案】
(1)解:由题意可知,f(﹣x)=﹣f(x),

设x∈[0,1],则﹣x∈[﹣1,0],

则f(﹣x)=﹣3x2

∴f(﹣x)=﹣3x2=﹣f(x),

即f(x)=3x2


(2)解:由(1)知f(x)=

∵不等式f(x)≤2cos2θ﹣asinθ+1都成立,

∴f(x)max≤2cos2θ﹣asinθ+1都成立,

∵f(x)max=f(1)=3,

∴2cos2θ﹣asinθ+1≥3,

即2sin2θ+asinθ≤0,

设f(a)=2sin2θ+asinθ,

∵a∈[﹣1,1],

,即

∴sinθ=0,

即θ=kπ,k∈Z


【解析】(1)根据函数奇偶性的性质,即可求出当x∈[0,1],f(x)的表达式;(2)将不等式恒成立,转换为最值恒成立即可得到结论.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】《汉字听写大会》不断创收视新高,为了避免“书写危机”弘扬传统文化,某市对全市10万名市民进行了汉字听写测试,调查数据显示市民的成绩服从正态分布.现从某社区居民中随机抽取50名市民进行听写测试,发现被测试市民正确书写汉字的个数全部在160到184之间,将测试结果按如下方式分成六组:第一组,第二组,…,第六组,如图是按上述分组方法得到的频率分布直方图.

(1)若电视台记者要从抽取的市民中选1人进行采访,求被采访人恰好在第1组或第4组的概率;

(2)已知第1组市民中男性有3名,组织方要从第1组中随机抽取2名市民组成弘扬传统文化宣传队,求至少有1名女性群众的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知抛物线的焦点为上位于第一象限的任意一点,过点的直线于另一点,交轴的正半轴于点.

(1)若当点的横坐标为,且为等腰三角形,求的方程;

(2)对于(1)中求出的抛物线,若点,记点关于轴的对称点为轴于点,且,求证:点的坐标为,并求点到直线的距离的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数),与图象的对称轴相邻的的零点为.

(Ⅰ)讨论函数在区间上的单调性;

(Ⅱ)设的内角的对应边分别为,且,若向量与向量共线,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

)当时,求的单调区间;

)设函数在点处的切线为,直线轴相交于点.若点的纵坐标恒小于1,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某中学为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识的竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐、规定:每场知识竞赛前三名的得分都分别为,且);选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为26分,乙和丙最后得分都为11分,且乙在其中一场比赛中获得第一名,则下列推理正确的是( )

A. 每场比赛第一名得分为4 B. 甲可能有一场比赛获得第二名

C. 乙有四场比赛获得第三名 D. 丙可能有一场比赛获得第一名

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知F1、F2分别是双曲线 =1(a>0,b>0)的左、右焦点,以坐标原点O为圆心,OF1为半径的圆与双曲线在第一象限的交点为P,则当△PF1F2的面积等于a2时,双曲线的离心率为(
A.
B.
C.
D.2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)= x2﹣3x+(a﹣1)lnx,g(x)=ax,h(x)=f(x)﹣g(x)+3x.
(1)当a=5时,求函数f(x)的导函数f′(x)的最小值;
(2)当a=3时,求函数h(x)的单调区间及极值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,D为边BC上一点,AD=6,BD=3,DC=2.

(1)若ADBC,求∠BAC的大小;

(2)若∠ABC,求△ADC的面积.

查看答案和解析>>

同步练习册答案