精英家教网 > 高中数学 > 题目详情

【题目】已知圆过点,且圆心在直线上,过点作直线与圆交于两点.

1)求圆的方程;

2)当时,若于圆交于,求直线的方程;

3)若点恰好是线段的中点,求实数的取值范围.

【答案】1;(2;(3.

【解析】

1)设圆的方程为:,代入已知条件求得即可;

(2)验证直线斜率不存在时,满足题意,直线斜率存在时,设其方程为,由求出两圆心到直线的距离,由勾股定理求得两弦长,由求得

3)记中点为,则,设,则,由勾股定理得的关系,消去后可把表示为的函数,由可得的范围.

1)设圆的方程为:

解得.

的方程为.

2)当直线斜率不存在时,直线方程为

,符合题意;

直线斜率存在时,设直线的方程为,即

此时,到直线的距离为到直线的距离为

.

,则,解得.

直线的方程为.

综上,直线的方程为.

3)设中点,则,设,则

.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若存在常数,使对一切实数均成立,则称为“倍约束函数”现给出下列函数:是定义在实数集上的奇函数,且对一切均有其中是“倍约束函数”的序号是  

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店

第一天售出但第二天未售出的商品有______种;

这三天售出的商品最少有_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,若ADBC,则AB2BD·BC;类似地有命题:在三棱锥ABCD中,AD⊥平面ABC,若A点在平面BCD内的射影为M,则有SSBCM·SBCD.上述命题是 (  )

A. 真命题

B. 增加条件“ABAC”才是真命题

C. 增加条件“M为△BCD的垂心”才是真命题

D. 增加条件“三棱锥ABCD是正三棱锥”才是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数,若,使得直线的斜率为0,则的最小值为( )

A. -8 B. C. -6 D. 2

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】ABC中,角ABC的对边分别为abc,若acos2ccos2b.

(1)求证:abc成等差数列;

(2)B60°b4,求ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】学校艺术节对同一类的四项参赛作品,只评一项一等奖,在评奖揭晓前,甲、乙、丙、丁四位同学对这四项参赛作品预测如下:

甲说:“是作品获得一等奖”;

乙说:“作品获得一等奖”;

丙说:“两项作品未获得一等奖”;

丁说:“是作品获得一等奖”.

若这四位同学中只有两位说的话是对的,则获得一等奖的作品是__________

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知pq

已知pq成立的必要不充分条件,求实数m的取值范围;

成立的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数满足如下条件:

①函数的最小值为,最大值为9

③若函数在区间上是单调函数,则的最大值为2

试探究并解决如下问题:

(Ⅰ)求,并求的值;

(Ⅱ)求函数的图象的对称轴方程;

(Ⅲ)设是函数的零点,求的值的集合.

查看答案和解析>>

同步练习册答案