精英家教网 > 高中数学 > 题目详情

【题目】如图,在△ABC中,ABAC,若ADBC,则AB2BD·BC;类似地有命题:在三棱锥ABCD中,AD⊥平面ABC,若A点在平面BCD内的射影为M,则有SSBCM·SBCD.上述命题是 (  )

A. 真命题

B. 增加条件“ABAC”才是真命题

C. 增加条件“M为△BCD的垂心”才是真命题

D. 增加条件“三棱锥ABCD是正三棱锥”才是真命题

【答案】A

【解析】因为AD⊥平面ABCAE平面ABCBC 平面ABC

所以ADAEADBC

在△ADE中,AE2ME·DE

A点在平面BCD内的射影为M

所以AM⊥平面BCDAMBC

所以BC⊥平面ADE

所以BCDEBCAE

所以A

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某大型超市在2018年元旦举办了一次抽奖活动,抽奖箱里放有2个红球,1个黄球和1个蓝球(这些小球除颜色外大小形状完全相同),从中随机一次性取2个小球,每位顾客每次抽完奖后将球放回抽奖箱.活动另附说明如下:

①凡购物满100(含100)元者,凭购物打印凭条可获得一次抽奖机会;

②凡购物满188(含188)元者,凭购物打印凭条可获得两次抽奖机会;

③若取得的2个小球都是红球,则该顾客中得一等奖,奖金是一个10元的红包;

④若取得的2个小球都不是红球,则该顾客中得二等奖,奖金是一个5元的红包;

⑤若取得的2个小球只有1个红球,则该顾客中得三等奖,奖金是一个2元的红包.

抽奖活动的组织者记录了该超市前20位顾客的购物消费数据(单位:元),绘制得到如图所示的茎叶图.

(1)求这20位顾客中获得抽奖机会的人数与抽奖总次数(假定每位获得抽奖机会的顾客都会去抽奖);

(2)求这20位顾客中奖得抽奖机会的顾客的购物消费数据的中位数与平均数(结果精确到整数部分);

(3)分别求在一次抽奖中获得红包奖金10元,5元,2元的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列命题中,mn表示两条不同的直线,表示三个不同的平面.正确的命题是(

,则,则

,则,则

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数学家欧拉在1765年发现,任意三角形的外心、重心、垂心位于同一条直线上,这条直线称为欧拉线已知的顶点,若其欧拉线的方程为,则顶点的坐标为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,矩形中, 为边的中点,将沿直线翻转成.若为线段的中点,则在翻折过程中:

是定值;②点在某个球面上运动;

③存在某个位置,使;④存在某个位置,使平面.

其中正确的命题是_________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆C的中心在原点,一个焦点F(-2,0),且长轴长与短轴长的比为

1)求椭圆C的方程;

2)设点M(m,0)在椭圆C的长轴上,设点P是椭圆上的任意一点,若当最小时,点P恰好落在椭圆的右顶点,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆过点,且圆心在直线上,过点作直线与圆交于两点.

1)求圆的方程;

2)当时,若于圆交于,求直线的方程;

3)若点恰好是线段的中点,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】2018年为我国改革开放40周年,某事业单位共有职工600人,其年龄与人数分布表如下:

年龄段

人数(单位:人)

180

180

160

80

约定:此单位45岁~59岁为中年人,其余为青年人,现按照分层抽样抽取30人作为全市庆祝晚会的观众.

(1)抽出的青年观众与中年观众分别为多少人?

(2)若所抽取出的青年观众与中年观众中分别有12人和5人不热衷关心民生大事,其余人热衷关心民生大事.完成下列列联表,并回答能否有的把握认为年龄层与热衷关心民生大事有关?

热衷关心民生大事

不热衷关心民生大事

总计

青年

12

中年

5

总计

30

(3)若从热衷关心民生大事的青年观众(其中1人擅长歌舞,3人擅长乐器)中,随机抽取2人上台表演节目,则抽出的2人能胜任才艺表演的概率是多少?

0.100

0.050

0.025

0.010

0.001

2.706

3.841

5.024

6.635

10.828

.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1642年,帕斯卡发明了一种可以进行十进制加减法的机械计算机年,莱布尼茨改进了帕斯卡的计算机,但莱布尼兹认为十进制的运算在计算机上实现起来过于复杂,随即提出了“二进制”数的概念之后,人们对进位制的效率问题进行了深入的研究研究方法如下:对于正整数,我们准备张不同的卡片,其中写有数字0,1,…,的卡片各有如果用这些卡片表示进制数,通过不同的卡片组合,这些卡片可以表示个不同的整数例如时,我们可以表示出个不同的整数假设卡片的总数为一个定值,那么进制的效率最高则意味着张卡片所表示的不同整数的个数最大根据上述研究方法,几进制的效率最高?  

A. 二进制 B. 三进制 C. 十进制 D. 十六进制

查看答案和解析>>

同步练习册答案