精英家教网 > 高中数学 > 题目详情

【题目】下列命题中,mn表示两条不同的直线,表示三个不同的平面.正确的命题是(

,则,则

,则,则

A.B.C.D.

【答案】C

【解析】

运用线面平行、垂直的性质定理即可判断

运用面面垂直的判定和性质定理,即可判断

运用线面平行的性质定理,即可判断mn的位置关系;

运用面面平行的传递性和线面垂直的性质定理,即可判断

解:由于nα,由线面平行的性质定理得,n平行于过n的平面与α的交线l,又mα,故ml,即mn,故正确;

αγβγ,则αβ可能相交,也可能平行,错;

mαnα,由线面平行的性质定理,即得mn平行、相交或异面,故错;

αββγmα,则面面平行的传递性得αγ,由线面垂直的性质定理得,mγ,故正确.

故选:C

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】设函数 .若曲线在点处的切线方程为为自然对数的底数).

(1)求函数的单调区间;

(2)若关于的不等式恒成立,求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的定义域为,若存在常数,使对一切实数均成立,则称为“倍约束函数”现给出下列函数:是定义在实数集上的奇函数,且对一切均有其中是“倍约束函数”的序号是  

A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,圆的参数方程为为参数),直线经过点,且倾斜角为

(1)写出直线的参数方程和圆的标准方程;

(2)设直线与圆相交于两点,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】近年来,我国电子商务蓬勃发展,有关部门推出了针对网购平台的商品和服务的评价系统,从该系统中随机选出100次成功了的交易,并对这些交易的评价进行统计,网购者对商品的满意率为0.6,对服务的满意率为0.75,其中对商品和服务都满意的交易为40次.

(1)根据已知条件完成下面的列联表,并回答能否有的把握认为“网购者对服务满意与对商品满意之间有关”?

(2)若将频率视为概率,某人在该网购平台上进行的3次购物中,设对商品和服务都满意的次数为,求的分布列和数学期望.

附: (其中为样本容量)

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】正方形的四个顶点都在椭圆上,若椭圆的焦点在正方形的内部,则椭圆的离心率的取值范围是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某网店统计了连续三天售出商品的种类情况:第一天售出19种商品,第二天售出13种商品,第三天售出18种商品;前两天都售出的商品有3种,后两天都售出的商品有4种,则该网店

第一天售出但第二天未售出的商品有______种;

这三天售出的商品最少有_______.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,若ADBC,则AB2BD·BC;类似地有命题:在三棱锥ABCD中,AD⊥平面ABC,若A点在平面BCD内的射影为M,则有SSBCM·SBCD.上述命题是 (  )

A. 真命题

B. 增加条件“ABAC”才是真命题

C. 增加条件“M为△BCD的垂心”才是真命题

D. 增加条件“三棱锥ABCD是正三棱锥”才是真命题

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知pq

已知pq成立的必要不充分条件,求实数m的取值范围;

成立的充分不必要条件,求实数m的取值范围.

查看答案和解析>>

同步练习册答案