精英家教网 > 高中数学 > 题目详情
18.已知θ是第四象限角,且$sin(θ+\frac{π}{4})=\frac{3}{5}$,则$tan(θ-\frac{π}{4})$=(  )
A.$\frac{3}{4}$B.$-\frac{3}{4}$C.$\frac{4}{3}$D.$-\frac{4}{3}$

分析 由θ得范围求得θ+$\frac{π}{4}$的范围,结合已知求得cos(θ+$\frac{π}{4}$),再由诱导公式求得sin($\frac{π}{4}$-θ)及cos($\frac{π}{4}$-θ),进一步由诱导公式及同角三角函数基本关系式求得tan(θ-$\frac{π}{4}$)的值.

解答 解:∵θ是第四象限角,
∴-$\frac{π}{2}$+2kπ<θ<2kπ,则-$\frac{π}{4}$+2kπ<θ+$\frac{π}{4}$<$\frac{π}{4}$+2kπ,k∈Z,
又sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,
∴cos(θ+$\frac{π}{4}$)=$\sqrt{1-si{n}^{2}(θ+\frac{π}{4})}$=$\frac{4}{5}$.
∴cos($\frac{π}{4}$-θ)=sin(θ+$\frac{π}{4}$)=$\frac{3}{5}$,sin($\frac{π}{4}$-θ)=cos(θ+$\frac{π}{4}$)=$\frac{4}{5}$.
∴tan(θ-$\frac{π}{4}$)=-tan($\frac{π}{4}$-θ)=-$\frac{sin(\frac{π}{4}-θ)}{cos(\frac{π}{4}-θ)}$=-$\frac{\frac{4}{5}}{\frac{3}{5}}$=-$\frac{4}{3}$.
故选:D.

点评 本题考查两角和与差的正切,考查诱导公式及同角三角函数基本关系式的应用,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

8.直线$\left\{\begin{array}{l}{x=-2-\sqrt{2}t}\\{y=3+\sqrt{2}t}\end{array}\right.$(t为参数)对应的普通方程是x+y-1=0.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知正四面体ABCD的四个顶点都在球心为O的球面上,点P为棱BC的中点,$BC=6\sqrt{2}$,过点P作球O的截面,则截面面积的最小值为18π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.在直角坐标系中,直线l的参数方程$\left\{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}\right.$(t为参数) 以坐标原点O为极点,以x轴正半轴为极轴,建立极坐标系,两种坐标系中取相同的单位长度,曲线C的极坐标方程为ρ=4cosθ
(1)求曲线C的直角坐标方程;
(2)若直线l与曲线C交于点A,B,且|AB|=$\sqrt{14}$,求直线的倾斜角α的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某单位280名员工参加“我爱阅读”活动,他们的年龄在25岁至50岁之间,按年龄分组:第1组[25,30),第2组[30,35),第3组[35,40),第4组[40,45),第5组[45,50),得到的频率分布直方图如图所示.
( I)现要从年龄低于40岁的员工中用分层抽样的方法抽取12人,则年龄在第1,2,3组的员工人数分别是多少?
( II)为了交流读书心得,现从上述12人中再随机抽取3人发言,设3人中年龄在[35,40)的人数为ξ,求ξ的数学期望;
( III)为了估计该单位员工的阅读倾向,现对从该单位所有员工中按性别比例抽取的40人做“是否喜欢阅读国学类书籍”进行调查,调查结果如下表所示:(单位:人)
喜欢阅读国学类 不喜欢阅读国学类 合计
 男 14 4 18
 女 8 14 22
 合计 22 18 40
根据表中数据,我们能否有99%的把握认为该单位员工是否喜欢阅读国学类书籍和性别有关系?
附:${K^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d
P(K2≥k00.050.0250.0100.0050.001
k03.8415.0246.6357.87910.828

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知动员P过定点$M(-\sqrt{3},0)$且与圆N:${(x-\sqrt{3})^2}+{y^2}=16$相切,记动圆圆心P的轨迹为曲线C.
(Ⅰ)求曲线C的方程;
(Ⅱ)过点D(3,0)且斜率不为零的直线交曲线C于A,B两点,在x轴上是否存在定点Q,使得直线AQ,BQ的斜率之积为非零常数?若存在,求出定点的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.已知菱形ABCD的边长为2,∠ABC=60°,点E满足$\overrightarrow{BE}=\frac{1}{2}\overrightarrow{BC}$,则$\overrightarrow{AE}•\overrightarrow{AD}$=0.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知直线l的参数方程为$\left\{\begin{array}{l}x=-1+\frac{{\sqrt{2}}}{2}t\\ y=\frac{{\sqrt{2}}}{2}t\end{array}\right.$(t为参数),以坐标原点为极点,x轴的正半轴为极轴建立极坐标系,圆C的极坐标方程为ρ=2cosθ.
(Ⅰ)求直线l的普通方程与圆C的直角坐标方程;
(Ⅱ)点P、Q分别在直线l和圆C上运动,求|PQ|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=x2+m与函数g(x)=-ln$\frac{1}{x}-3x({x∈[{\frac{1}{2},2}]})$的图象上恰有两对关于x轴对称的点,则实数m的取值范围是(  )
A.$[{\frac{5}{4}+ln2,2})$B.$[{2-ln2,\frac{5}{4}+ln2})$C.$({\frac{5}{4}+ln2,2-ln2}]$D.(2-ln2,2]

查看答案和解析>>

同步练习册答案