精英家教网 > 高中数学 > 题目详情
16.设集合A={x|2x2-5x-3≤0},B={y|y=log2(x2+3x-4)},则A∩B=(  )
A.[-3,$\frac{1}{2}$]B.[-$\frac{1}{2}$,3]C.(1,3]D.(4,+∞)

分析 解关于A、B的不等式,求出A、B的范围,取交集即可.

解答 解:由2x2-5x-3≤0,得-$\frac{1}{2}$≤x≤3,∴A=[-$\frac{1}{2}$,3];
∵函数y=log2(x2+3x-4的值域为R,∴B=R,
∴A∩B=[-$\frac{1}{2}$,3],
故选:B.

点评 本题考查了集合的运算,考查解不等式问题,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

12.函数f(x)=sin(ωx+φ)(ω>0,0<φ<$\frac{π}{2}$)的部分图象如图所示,则函数f(x)的单调递减区间为[$\frac{π}{4}+kπ$,$\frac{5π}{8}+kπ$],k∈Z.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设不等式组$\left\{\begin{array}{l}2x-y-2≤0\\ x+y-1≥0\\ x-y+1≥0\end{array}\right.$表示的平面区域为a,P(x,y)是区域D上任意一点,则|x-2|-|2y|的最小值是-7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.设集合A={x|x2-x-6≤0},$B=\{x|\sqrt{x^2}>2\}$,则A∩B=(  )
A.(2,3]B.(2,3)C.(-2,3]D.(-2,3)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知平面向量$\overrightarrow a=(-2,1)$,$\overrightarrow b=(1,2)$,则$|{\overrightarrow a-2\overrightarrow b}|$的值是(  )
A.1B.5C.$\sqrt{3}$D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.已知F1,F2是双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的左、右焦点,设双曲线的离心率为e.若在双曲线的右支上存在点M,满足|MF2|=|F1F2|,且esin∠MF1F2=1,则该双曲线的离心率e等于(  )
A.$\frac{5}{4}$B.$\frac{5}{3}$C.$\sqrt{5}$D.$\frac{5}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知函数f(x)=x3-3x2+2,g(x)=kx-2lnx+3(k>-$\frac{1}{6}$).
(Ⅰ)若过点P(a,-3)(a>0)恰有两条直线与曲线y=f(x)相切,求a的值;
(Ⅱ)用min{p,q}表示p,q中的最小值,设函数h(x)=min{f(x),g(x)}(x>0),若h(x)恰有三个零点,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.四棱柱ABCD-A1B1C1D1中,底面ABCD为正方形,AD=AA1=A1D=2,H为AD中点,且A1H⊥BD.
(1)证明AB⊥AA1
(2)求点C到平面A1BD的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知三棱锥A-BCD的四个顶点A,B,C,D都在球O的表面上,BC⊥CD,AC⊥平面BCD,且AC=2$\sqrt{2}$,BC=CD=2,则球O的表面积为(  )
A.B.C.16πD.2$\sqrt{2}$π

查看答案和解析>>

同步练习册答案