精英家教网 > 高中数学 > 题目详情
15.如图,已知PA切⊙O于点A,D为PA的中点,过点D引割线交⊙O于B、C两点.PD=2,PB=3,$DB=\frac{3}{2}$,则PC=4.

分析 根据圆的切割线定理,求出DC、BC的长,再由余弦定理,求出cos∠PBD以及PC的长.

解答 解:∵PA切⊙O于点A,
∴DA2=DB•DC;
又D为PA的中点,PD=2,$DB=\frac{3}{2}$,
∴22=$\frac{3}{2}$•DC,
解得DC=$\frac{8}{3}$,
∴BC=DC-DB=$\frac{8}{3}$-$\frac{3}{2}$=$\frac{7}{6}$;
在△PBD中,由余弦定理得,
cos∠PBD=$\frac{{PB}^{2}{+DB}^{2}{-PD}^{2}}{2PB•DB}$=$\frac{{3}^{2}{+(\frac{3}{2})}^{2}{-2}^{2}}{2×3×\frac{3}{2}}$=$\frac{29}{36}$;
在△PBC中,由余弦定理得,
PC2=PB2+CB2-2PB•BCcos∠PBC=32+${(\frac{7}{6})}^{2}$-2×3×$\frac{7}{6}$×(-$\frac{29}{36}$)=16,
∴PC=4.
故答案为:4.

点评 本题考查了圆的切割线定理以及余弦定理的灵活应用问题,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

19.已知平面向量$\overrightarrow{a}$=(2,-1),$\overrightarrow{b}$=(1,1),$\overrightarrow{c}$=(-5,1),若($\overrightarrow{a}$+k$\overrightarrow{b}$)⊥$\overrightarrow{c}$,则实数k的值为-$\frac{11}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.不等式x(x-2)≤0的解集是(  )
A.[0,2)B.(-∞,0)∪(2,+∞)C.(-∞,0]∪[2,+∞)D.[0,2]

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.在平面直角坐标系xOy中,椭圆C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的离心率为$\frac{1}{2}$,连接椭圆C的四个顶点所形成的四边形面积为4$\sqrt{3}$.
(1)求椭圆C的标准方程;
(2)如图,过椭圆C的下顶点A作两条互相垂直的直线,分别交椭圆C于点M,N,设直线AM的斜率为k,直线l:y=$\frac{{k}^{2}-1}{k}$x分别与直线AM,AN交于点P,Q,记△AMN,△APQ的面积分别为S1,S2,是否存在直线l,使得$\frac{{S}_{1}}{{S}_{2}}$=$\frac{64}{65}$?若存在,求出所有直线l的方程;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=lnx,g(x)=$\frac{1}{2}$x2-kx;
(1)设k=m+$\frac{1}{m}$(m>0),若函数h(x)=f(x)+g(x)在区间(0,2)内有且仅有一个极值点,求实数m的取值范围;
(2)设M(x)=f(x)-g(x),若函数M(x)存在两个零点x1,x2(x1>x2),且满足2x0=x1+x2,问:函数M(x)在(x0,M(x0))处的切线能否平行于直线y=1,若能,求出该切线方程,若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.在直三棱锥ABC-A1B1C1中,AA1=AB=AC=2,E,F分别是CC1,BC的中点,AE⊥A1B1,D为棱A1B1上的点.
(1)证明:DF⊥AE;
(2)是否存在一点D,使得平面DEF与平面ABC夹角的余弦值为$\frac{\sqrt{14}}{14}$?若存在,说明点D的位置,若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图,四边形ABCD内接于⊙O,BA,CD的延长线相交于点E,EF∥DA,并与CB的延长线交于点F,FG切⊙O于G.
(1)求证:BE•EF=CE•BF;
(2)求证:FE=FG.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.正四面体ABCD中,AB=CD=5,BC=AD=7,AC=BD=8,则外接球表面积为69π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知函数f(x)=e1-xcosx,a∈R.
(Ⅰ)判断函数f(x)在$(0,\frac{π}{2})$上的单调性;
(Ⅱ)证明:?x∈[-1,$\frac{1}{2}$],总有f(-x-1)+2f′(x)•cos(x+1)>0.

查看答案和解析>>

同步练习册答案