| A. | $\frac{1}{2}$ | B. | $\frac{2}{3}$ | C. | $\frac{3}{4}$ | D. | 1 |
分析 根据f(x)为奇函数便可得到$\frac{-x}{(-2x-1)(-x-a)}=-\frac{x}{(2x-1)(x-a)}$,从而得到(2x+1)(x+a)=(2x-1)(x-a),这样即可得出2a+1=0,从而求出a的值.
解答 解:f(x)为奇函数;
∴f(-x)=-f(x);
即$\frac{-x}{(-2x-1)(-x-a)}=-\frac{x}{(2x-1)(x-a)}$;
∴(2x+1)(x+a)=(2x-1)(x-a);
∴2x2+(2a+1)x+a=2x2-(2a+1)x+a;
∴2a+1=-(2a+1);
∴$2a+1=0,a=-\frac{1}{2}$.
故选:A.
点评 考查奇函数的概念,多项式相等时,对应项的系数相等,本题还可根据奇函数的定义域关于原点对称来求a的值.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{3}{4}$ | B. | $\frac{7}{10}$ | C. | $\frac{4}{5}$ | D. | $\frac{3}{5}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com