分析 (1)由原不等式得log2(5•2k-1x-x2)≥2k=log222k,则x2-5•2k-1x+22k≤0,得到x的取值范围后,就能求出f(k)的解析式;
(2)由Sn=f(1)+2f(2)+…+nf(n)=3(1+2•2+…+n•2n-1)+(1+2+…+n),利用错位相减法、等差数列的求和公式,即可求得结果.
解答 解:(1)由原不等式得log2(5•2k-1x-x2)≥2k=log222k,
则x2-5•2k-1x+22k≤0,
故2k-1≤x≤4•2k-1.
∴f(k)=4•2k-1-2k-1+1=3•2k-1+1(k∈N*);
(2)kf(k)=3k•2k-1+k.
Sn=f(1)+2f(2)+…+nf(n)=3(1+2•2+…+n•2n-1)+(1+2+…+n),
设t=1+2•2+…+n•2n-1(1)
2t=1•2+2•22+…+n•2n(2)
(1)式减(2)式得-t=1+2+…+2n-1-n•2n
∴t=(n-1)•2n+1
∴${s_n}=3(n-1)•{2^n}+\frac{n(n+1)}{2}+3$.
点评 本题考查对数的运算性质以及利用对数的单调性求解对数不等式,注意对数函数的定义域,和错位相减法、等差数列的求和公式,利用对数函数的单调性解对数不等式,求出函数的解析式是解题的关键,同时考查灵活应用知识分析解决问题的能力和运算能力,属中档题.
科目:高中数学 来源: 题型:选择题
| A. | 3$\sqrt{5}$-1 | B. | 3$\sqrt{5}$-2 | C. | 3($\sqrt{5}$-1) | D. | 5 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | $\frac{1}{2}$ | C. | -$\frac{1}{2}$ | D. | -2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 0 | C. | 1 | D. | 2016 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com