精英家教网 > 高中数学 > 题目详情
7.在{an}中,${a_1}=2,\frac{a_1}{1}+\frac{a_2}{2}+…+\frac{a_n}{n}=\frac{n}{{2({n+1})}}{a_{n+1}}$.
(1)求数列{an}的通项公式;
(2)若${b_n}=\frac{1}{{{a_{n+1}}-2}}$,数列{bn}的前n项和为Sn,证明:${S_n}<\frac{3}{8}$.

分析 (1)在{an}中,${a_1}=2,\frac{a_1}{1}+\frac{a_2}{2}+…+\frac{a_n}{n}=\frac{n}{{2({n+1})}}{a_{n+1}}$.n≥2时,$\frac{{a}_{1}}{1}+\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n-1}}{n-1}$=$\frac{n-1}{2n}$an,相减可得:$\frac{{a}_{n}}{n}$=$\frac{n}{2(n+1)}{a}_{n+1}$-$\frac{n-1}{2n}$an,化为:$\frac{{a}_{n+1}}{(n+1)^{2}}$=$\frac{{a}_{n}}{{n}^{2}}$,即可得出.
(2)${b_n}=\frac{1}{{{a_{n+1}}-2}}$=$\frac{1}{2(n+1)^{2}-2}$=$\frac{1}{2n(n+2)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2})$,利用裂项求和方法即可得出.

解答 (1)解:在{an}中,${a_1}=2,\frac{a_1}{1}+\frac{a_2}{2}+…+\frac{a_n}{n}=\frac{n}{{2({n+1})}}{a_{n+1}}$.
n≥2时,$\frac{{a}_{1}}{1}+\frac{{a}_{2}}{2}$+…+$\frac{{a}_{n-1}}{n-1}$=$\frac{n-1}{2n}$an
相减可得:$\frac{{a}_{n}}{n}$=$\frac{n}{2(n+1)}{a}_{n+1}$-$\frac{n-1}{2n}$an
化为:$\frac{{a}_{n+1}}{(n+1)^{2}}$=$\frac{{a}_{n}}{{n}^{2}}$,
又$\frac{{a}_{2}}{{2}^{2}}$=$\frac{{a}_{1}}{{1}^{2}}$=2.
∴$\frac{{a}_{n}}{{n}^{2}}$=2,即an=2n2
(2)证明:${b_n}=\frac{1}{{{a_{n+1}}-2}}$=$\frac{1}{2(n+1)^{2}-2}$=$\frac{1}{2n(n+2)}$=$\frac{1}{4}(\frac{1}{n}-\frac{1}{n+2})$,
∴数列{bn}的前n项和为Sn=$\frac{1}{4}[(1-\frac{1}{3})+(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{4}(1+\frac{1}{2}-\frac{1}{n+1}-\frac{1}{n+2})$$<\frac{3}{8}$.
∴${S_n}<\frac{3}{8}$.

点评 本题考查了数列递推关系、裂项求和方法,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知复数z=$\frac{\sqrt{3}+i}{2i}$,$\overline{z}$是z的共轭复数,则z•$\overline{z}$=(  )
A.1B.2C.$\frac{1}{4}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$z=\frac{5i}{3+4i}$,则|z|=(  )
A.1B.3C.5D.7

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知函数f(x)=x4-2x3,g(x)=-4x2+4x-2,x∈R.
(1)求f(x)的最小值;
(2)证明:f(x)>g(x).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知向量$\overrightarrow{a}$与向量$\overrightarrow{b}$的夹角为θ,且|$\overrightarrow{a}$|=1,|$\overrightarrow{b}$|=$\sqrt{2}$.
(1)若$\overrightarrow{a}$∥$\overrightarrow{b}$,求$\overrightarrow{a}$•$\overrightarrow{b}$;
(2)若$\overrightarrow{a}$-$\overrightarrow{b}$与$\overrightarrow{a}$垂直,求θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知正项等差数列{an}的前n项和为Sn,且满足${a_1}+{a_5}=\frac{1}{3}a_3^2,{S_7}=56$.
(1)求数列{an}的通项公式;
(2)求数列$\left\{{{3^{a_n}}}\right\}$的前n项和.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.定义:用{x}表示不小于x的最小整数,例如{2}=2,{1,2}=2,{-1,1}=-1,已知数列{an}满足:${a_1}=1,{a_{n+1}}={a_n}^2+{a_n}$,则{$\frac{1}{{a}_{1}+1}+\frac{1}{{a}_{2}+1}+…+\frac{1}{{a}_{2016}+1}$}=(  )
A.-1B.0C.1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.设l,m,n表示三条直线,α,β,γ表示三个平面,则下列命题中不成立的是(  )
A.若m?α,n?α,m∥n,则n∥α
B.若α⊥γ,α∥β,则β⊥γ
C.若m?β,n是l在β内的射影,若m⊥l,则m⊥n
D.若α⊥β,α∩β=m,l⊥m,则l⊥β

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.已知实数x,y满足$\left\{\begin{array}{l}{y≥0}\\{x-y≥0}\\{2x-y-2≥0}\end{array}\right.$,则ω=$\frac{y-1}{x+1}$的取值范围是(  )
A.[-1,$\frac{1}{3}$]B.[-$\frac{1}{2}$,$\frac{1}{3}$]C.[-$\frac{1}{2}$,1)D.[-$\frac{1}{2}$,+∞)

查看答案和解析>>

同步练习册答案