精英家教网 > 高中数学 > 题目详情
设等差数列{an}的首项a1为a,公差d=2,前n项和为Sn
(Ⅰ)若S1,S2,S4成等比数列,求数列{an}的通项公式;
(Ⅱ)证明:对n∈N*,a∈R,Sn•Sn+2-Sn+12<0成立.
考点:数列与不等式的综合,等差数列的性质
专题:等差数列与等比数列
分析:(Ⅰ)利用等差数列的前n项和,结合S1,S2,S4成等比数列,求出a,即可求数列{an}的通项公式;
(Ⅱ)利用(Ⅰ)中的qiann项和,计算Sn•Sn+2-Sn+12的值,证明小于0即可.
解答: 解:(Ⅰ)等差数列{an}的首项a1为a,公差d=2,前n项和为Sn=na+n(n-1)=n2+(a-1)n.
S1=a,S2=2a+2,S4=4a+12,S1,S2,S4等比数列,∴(2a+2)2=a(4a+12),解得a=1,
数列{an}的通项公式:an=1+(n-1)×2=2n-1.
(Ⅱ)Sn=n2+(a-1)n,
对n∈N*,a∈R,
Sn•Sn+2-Sn+12=[n2+(a-1)n][(n+2)2+(a-1)(n+2)]-[(n+1)2+(a-1)(n+1)]2
=n(n+2)[(n+a)2-1]-(n+1)2(n+a)2
=-(n+a)2-n(n+2)<0.
∴对n∈N*,a∈R,Sn•Sn+2-Sn+12<0成立.
点评:本题考查数列求和,数列与不等式的应用,考查分析问题解决问题的能力.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知函数f(x)=ex,(x∈R).
(1)求f(x)在点(1,e)处的切线方程;
(2)证明:曲线y=f(x)与曲线y=
1
2
x2+x+1有唯一公共点;
(3)设a<b,比较f(
a+b
2
)与
f(b)-f(a)
b-a
的大小,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

在极坐标系中,O为极点,半径为2的圆C的圆心的极坐标为(2,
π
2
).
(Ⅰ)求圆C的极坐标方程;
(Ⅱ)在以极点O为原点,以极轴为x轴正半轴建立的直角坐标系中,直线l的参数方程为
x=1+
1
2
t
y=-2+
3
2
t
(t为参数),直线l与圆C相交于A,B两点,已知定点M(1,-2),求|MA|•|MB|.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,an=(2n-1)•2n-1,求其前n项和Sn

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,AB是圆O的直径,BC是圆O的切线,切点为B,OC平行于弦AD.
(Ⅰ)求证∠ADO=∠COB;
(Ⅱ)若OB=3,OC=5,求CD的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

分别求出符合下列要求的不同排法的种数
(1)6名学生排3排,前排1人,中排2人,后排3人;
(2)6名学生排成一排,甲不在排头也不在排尾;
(3)从6名运动员中选出4人参加4×100米接力赛,甲不跑第一棒,乙不跑第四棒;
(4)6人排成一排,甲、乙必须相邻;
(5)6人排成一排,甲、乙不相邻.

查看答案和解析>>

科目:高中数学 来源: 题型:

求函数y=
-x2+x+2
的最大值和最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设集合A={x|2<(
1
2
x<4},B={x|y=lg
x-a
3a-x
,a≠0,a∈R}.
(1)当a=1时,求集合B;
(2)当A∪B=B时,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图四棱锥S-ABCD,底面ABCD是正方形,SD⊥底面ABCD,M为SC的中点.
(1)求证:SA∥平面MBD
(2)证明:平面SAC⊥平面SBD.

查看答案和解析>>

同步练习册答案