精英家教网 > 高中数学 > 题目详情

【题目】在如图所示的多面体中,四边形ABB1A1和ACC1A1都为矩形
(Ⅰ)若AC⊥BC,证明:直线BC⊥平面ACC1A1
(Ⅱ)设D、E分别是线段BC、CC1的中点,在线段AB上是否存在一点M,使直线DE∥平面A1MC?请证明你的结论.

【答案】证明:(Ⅰ)∵四边形ABB1A1和ACC1A1都为矩形,
∴AA1⊥AB,AA1⊥AC,
∵AB∩AC=A,
∴AA1⊥平面ABC,
∵BC平面ABC,
∴AA1⊥BC,
∵AC⊥BC,AA1∩AC=A,
∴直线BC⊥平面ACC1A1
(Ⅱ)解:取AB的中点M,连接A1M,MC,A1C,AC1 , 设O为A1C,AC1的交点,则O为AC1的中点.
连接MD,OE,则MD∥AC,MD=AC,OE∥AC,OE=AC,
∴MD∥OE,MD=OE,
连接OM,则四边形MDEO为平行四边形,
∴DE∥MO,
∵DE平面A1MC,MO平面A1MC,
∴DE∥平面A1MC,
∴线段AB上存在一点M(线段AB的中点),使直线DE∥平面A1MC.

【解析】(Ⅰ)先证明AA1⊥平面ABC,可得AA1⊥BC,利用AC⊥BC,可以证明直线BC⊥平面ACC1A1
(Ⅱ)取AB的中点M,连接A1M,MC,A1C,AC1 , 证明四边形MDEO为平行四边形即可.
【考点精析】关于本题考查的直线与平面平行的判定和直线与平面垂直的性质,需要了解平面外一条直线与此平面内的一条直线平行,则该直线与此平面平行;简记为:线线平行,则线面平行;垂直于同一个平面的两条直线平行才能得出正确答案.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某纺纱厂生产甲、乙两种棉纱,已知生产甲种棉纱1吨需耗一级籽棉2吨、二级籽棉1吨;生产乙种棉纱1吨需耗一级籽棉1吨,二级籽棉2吨.每1吨甲种棉纱的利润为900元,每1吨乙种棉纱的利润为600元.工厂在生产这两种棉纱的计划中,要求消耗一级籽棉不超过250吨,二级籽棉不超过300吨.问甲、乙两种棉纱应各生产多少吨,能使利润总额最大?并求出利润总额的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】公元263年左右,我国数学家刘徽发现当圆内接正多边形的边数无限增加时,多边形面积可无限逼近圆的面积,并创立了“割圆术”,利用“割圆术”刘徽得到了圆周率精确到小数点后两位的近似值,这就是著名的“徽率”,如图是利用刘徽的“割圆术”思想设计的一个程序框图,则输出的值为 ( )

(参考数据:

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修44:坐标系与参数方程

在平面直角坐标系中,圆C的参数方程为,(t为参数),在以原点O为极点,x轴的非负半轴为极轴建立的极坐标系中,直线的极坐标方程为AB两点的极坐标分别为.

()求圆C的普通方程和直线的直角坐标方程;

()P是圆C上任一点,求△PAB面积的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,一个的矩形),被截取一角(即), ,平面平面 .

(1)证明:

(2)求二面角的大小的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中国古代数学家刘徽在《九章算术注》中,称一个正方体内两个互相垂直的内切圆柱所围成的立体为“牟合方盖”,如图(1)(2),刘徽未能求得牟合方盖的体积,直言“欲陋形措意,惧失正理”,不得不说“敢不阙疑,以俟能言者”.约200年后,祖冲之的儿子祖暅提出“幂势既同,则积不容异”,后世称为祖暅原理,即:两等高立体,若在每一等高处的截面积都相等,则两立体体积相等.如图(3)(4),祖暅利用八分之一正方体去掉八分之一牟合方盖后的几何体与长宽高皆为八分之一正方体的边长的倒四棱锥“等幂等积”,计算出牟合方盖的体积,据此可知,牟合方盖的体积与其外切正方体的体积之比为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面α过正方体ABCD﹣A1B1C1D1的顶点A,α∥平面CB1D1 , α∩平面ABCD=m,α∩平面AB B1A1=n,则m,n所成角的正弦值为

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数,且曲线处的切线与平行.

(1)求的值;

(2)当时,试探究函数的零点个数,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列各组中的两个函数是同一函数的为( )
(1)f(x)=1,g(x)=x0
(2)f(x)= ,g(x)=
(3)f(x)=lnxx , g(x)=elnx
(4)f(x)= ,g(x)=
A.(1)
B.(2)
C.(3)
D.(4)

查看答案和解析>>

同步练习册答案