精英家教网 > 高中数学 > 题目详情
12.用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6,在当x=-1时的值,有如下的说法:①要用到6次乘法和6次加法;②要用到6次加法和8次乘法;③v0=-23; ④v3=11,其中正确的是(  )
A.①③B.①④C.②④D.①③④

分析 根据秦九韶算法求多项式的规则变化其形式,把f(x)=12+35x+9x3+5x5+3x6等到价转化为f(x)=(((((3x+5)x+0)x+9)x+0)x+35)x+12,就能求出结果.

解答 解:∵f(x)=12+35x+9x3+5x5+3x6=(((((3x+5)x+0)x+9)x+0)x+35)x+12
∴需做加法与乘法的次数都是6次,
∴v0=3,
v1=v0x+a5=3×(-1)+5=2,
v2=v1x+a4=2×(-1)+0=-2,
v3=v2x+a3=-2×(-1)+9=11,
∴V3的值为11;
其中正确的是①④
故选:B.

点评 本题考查算法的多样性,正确理解秦九韶算法求多项式的原理是解题的关键,本题是一个比较简单的题目,运算量也不大,只要细心就能够做对,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.若样本1+x1,1+x2,1+x3,…,1+xn的平均数是10,方差为2,则对于样本2+x1,2+x2,…,2+xn,下列结论正确的是(  )
A.平均数为10,方差为2B.平均数为11,方差为3
C.平均数为11,方差为2D.平均数为12,方差为4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.下列命题中,正确的是(  )
A.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|⇒$\overrightarrow{a}$=$\overrightarrow{b}$B.|$\overrightarrow{a}$|>|$\overrightarrow{b}$|⇒$\overrightarrow{a}$>$\overrightarrow{b}$C.|$\overrightarrow{a}$|=|$\overrightarrow{b}$|⇒$\overrightarrow{a}$∥$\overrightarrow{b}$D.|$\overrightarrow{a}$|=0⇒$\overrightarrow{a}$=$\overrightarrow{0}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.cos$\frac{5π}{6}$=-$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.直线xcosα+$\sqrt{3}$y+2=0的斜率的范围是[$-\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$],倾斜角的范围是[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.已知函数f(x)=-x3-x,若实数a,b满足f(a-1)+f(b)=0,则a+b等于1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.下面四个图象中,有一个是函数f(x)=$\frac{1}{3}$x3+ax2+(a2-1)x+1(a∈R)的导函数y=f'(x)的图象,则f(-1)等于(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{5}{3}$D.-$\frac{1}{3}$或$\frac{5}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知A={x|m+1≤x≤3m-1},B={x|1≤x≤10},且A⊆B,求实数m的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知|a|=3,|b|=2,|c|=1,且a<b<c,求a+b+c的值.

查看答案和解析>>

同步练习册答案