分析 由方程可得直线的斜率,由cosα的范围可得斜率的范围,进而由正切函数可得倾斜角的范围.
解答 解:易得直线xcosα+$\sqrt{3}$y+2=0斜率k=-$\frac{cosα}{\sqrt{3}}$,
∵-1≤cosα≤1,∴k=-$\frac{cosα}{\sqrt{3}}$∈[$-\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$],
设直线的倾斜角为θ,则tanθ∈[$-\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$],
∴由正切函数和倾斜角的范围可得θ∈[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π)
故答案为:[$-\frac{\sqrt{3}}{3}$,$\frac{\sqrt{3}}{3}$];[0,$\frac{π}{6}$]∪[$\frac{5π}{6}$,π)
点评 本题考查直线的一般式方程和斜率以及倾斜角的关系,涉及正切函数的值域,属基础题.
科目:高中数学 来源: 题型:选择题
| A. | -1 | B. | 1 | C. | -2 | D. | 2 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-1,0)∪(1,+∞) | B. | (-1,0)∪(0,1) | C. | (-∞,-1)∪(1,+∞) | D. | (-∞,-1)∪(0,1) |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ①③ | B. | ①④ | C. | ②④ | D. | ①③④ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | m>$\frac{1}{2}$ | B. | m$<\frac{1}{2}$ | C. | 0$≤m<\frac{1}{2}$ | D. | $\frac{1}{2}<m≤1$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com