精英家教网 > 高中数学 > 题目详情
1.已知A={x|m+1≤x≤3m-1},B={x|1≤x≤10},且A⊆B,求实数m的取值范围.

分析 由题意,讨论A是否是空集,从而解得.

解答 解:①若A=∅,即m+1>3m-1;
解得,m<1,A⊆B成立;
②若A≠∅,∵A⊆B;
∴1≤m+1≤3m-1≤10;
解得,1≤m≤$\frac{11}{3}$;
综上所述,实数m的取值范围为(-∞,$\frac{11}{3}$].

点评 本题考查了集合关系的应用,注意讨论A是否是空集即可.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知在四棱锥P-ABCD中,PD⊥平面ABCD,PD=DC=BC=1,AB=2,AB∥DC,∠BCD=90°,E,F分别是PC,AB的中点.
(1)PC⊥EF;
(2)求点F到平面PBC的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.用秦九韶算法计算多项式f(x)=12+35x+9x3+5x5+3x6,在当x=-1时的值,有如下的说法:①要用到6次乘法和6次加法;②要用到6次加法和8次乘法;③v0=-23; ④v3=11,其中正确的是(  )
A.①③B.①④C.②④D.①③④

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.若0<t<1,则关于x的不等式(t-x)(x-$\frac{1}{t}$)>0的解集是(t,$\frac{1}{t}$).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知函数f(x)=$\left\{\begin{array}{l}\frac{1}{x+2},-1≤x≤0\\{x}^{2}-2x,0<x≤1\end{array}\right.$,若f(2m-1)<$\frac{1}{2}$,则m的取值范围是(  )
A.m>$\frac{1}{2}$B.m$<\frac{1}{2}$C.0$≤m<\frac{1}{2}$D.$\frac{1}{2}<m≤1$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.角α是第一象限角,且sinα=$\frac{1}{2}$,那么cosα(  )
A.$\frac{\sqrt{3}}{2}$B.-$\frac{\sqrt{3}}{2}$C.$\frac{\sqrt{2}}{2}$D.-$\frac{\sqrt{2}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.A={x|x<1},B={x|x<-2或x>0},则A∩B=(  )
A.(0,1)B.(-∞,-2)C.(-2,0)D.(-∞,-2)∪(0,1)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.三角函数y=sin $\frac{x}{2}$是(  )
A.周期为4π的奇函数B.周期为$\frac{π}{2}$的奇函数
C.周期为π的偶函数D.周期为2π的偶函数

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知复数z=x+yi(x,y∈R)满足($\frac{1}{2}x-y$)+(x+y)i=3i,则复数z的模为$\sqrt{5}$.

查看答案和解析>>

同步练习册答案