精英家教网 > 高中数学 > 题目详情

【题目】在三棱锥中,在底面上的投影为的中点.有下列结论:

①三棱锥的三条侧棱长均相等;

的取值范围是

③若三棱锥的四个顶点都在球的表面上,则球的体积为

④若是线段上一动点,则的最小值为.

其中所有正确结论的编号是(

A.①②B.②③C.①②④D.①③④

【答案】C

【解析】

根据三角形全等判断,根据的值和三角形的内角和得出的范围,计算外接球半径判断,将棱锥侧面展开计算最短距离判断

解:如图1,的中点,

平面,故正确;

,又

为垂足,如图2,则

,故正确;

为平面截三棱锥外接球的截面圆心,

设外接球球心为,则在直线上,如图3,

,则,解得,故为外接球的球心.

外接球的体积为,故错误.


,则,又,故是等边三角形,

将平面沿翻折到平面上,如图4,图5.

的最短距离为线段的长.


,故正确.

故选:

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】在多面体中,正方形和矩形互相垂直,分别是的中点,.

(Ⅰ)求证:平面.

(Ⅱ)在边所在的直线上存在一点,使得平面,求的长;

(Ⅲ)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设集合STSN*TN*ST中至少有两个元素,且ST满足:

①对于任意xyS,若xy,都有xyT

②对于任意xyT,若x<y,则S

下列命题正确的是(

A.S4个元素,则ST7个元素

B.S4个元素,则ST6个元素

C.S3个元素,则ST5个元素

D.S3个元素,则ST4个元素

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的浓度(单位:),得下表:

1)估计事件该市一天空气中浓度不超过,且浓度不超过的概率;

2)根据所给数据,完成下面的列联表:

3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?

附:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在①;②;③,这三个条件中任选一个,补充在下面问题中,然后解答补充完整的题目.

在△中,内角ABC所对的边分别为.且满足_________.

1)求

2)已知,△的外接圆半径为,求△的边AB上的高.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】一个正方体的平面展开图如图所示,在这个正方体中,点是棱的中点,分别是线段(不包含端点)上的动点,则下列说法正确的是( )

A.在点的运动过程中,存在

B.在点的运动过程中,存在

C.三棱锥的体积为定值

D.三棱锥的体积不为定值

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在四棱锥中,.

(Ⅰ)若点的中点,求证:∥平面

(Ⅱ)当平面平面时,求二面角的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某公司为加强对销售员的考核与管理,从销售部门随机抽取了2019年度某一销售小组的月均销售额,该小组各组员2019年度的月均销售额(单位:万元)分别为:3.353.353.383.413.433.443.463.483.513.543.563.563.573.593.603.643.643.673.703.70.

(Ⅰ)根据公司人力资源部门的要求,若月均销售额超过3.52万元的组员不低于全组人数的,则对该销售小组给予奖励,否则不予奖励.试判断该公司是否需要对抽取的销售小组发放奖励;

(Ⅱ)在该销售小组中,已知月均销售额最高的5名销售员中有1名的月均销售额造假.为找出月均销售额造假的组员,现决定请专业机构对这5名销售员的月均销售额逐一进行审核,直到能确定出造假组员为止.设审核次数为,求的分布列及数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在平面直角坐标系中,曲线t为参数),曲线,(为参数),以坐标原点O为极点,x轴正半轴为极轴,建立极坐标系.

1)求曲线的极坐标方程;

2)射线分别交AB两点,求的最大值.

查看答案和解析>>

同步练习册答案