已知双曲线C1:=1的左准线为l,左、右焦点分别为F1、F2,抛物线C2的准线为l,焦点是F2,若C1与C2的一个交点为P,则PF2=
A.40
B.32
C.8
D.4
科目:高中数学 来源:黄冈重点作业·高三数学(下) 题型:044
已知双曲线C1:2x2-y2=2m2(m>0),抛物线C2的顶点在原点,焦点F与C1的左焦点重合.
(1)求证C1与C2总有两个不同的交点;
(2)是否存在过抛物线C2的焦点F的弦AB,使△AOB的面积有最大值或最小值?若存在,求出直线AB的方程;若不存在,说明理由.
查看答案和解析>>
科目:高中数学 来源:深圳市2007届高三数学摸底考试题(文理) 题型:038
如图,已知双曲线C1:=1(m>0,n>0),圆C2:(x-2)2+y2=2,双曲线C1的两条渐近线与圆C2相切,且双曲线C1的一个顶点A与圆心C2关于直线y=x对称,设斜率为k的直线l过点C2.
(1)求双曲线C1的方程;
(2)当k=1时,在双曲线C1的上支上求一点P,使其与直线l的距离为2.
查看答案和解析>>
科目:高中数学 来源:2012年普通高等学校招生全国统一考试山东卷数学文科 题型:013
已知双曲线C1:-=1(a>0,b>0)的离心率为2.若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为
A.x2=y
B.x2=y
C.x2=8y
D.x2=16y
查看答案和解析>>
科目:高中数学 来源:2014届山东省济宁市高二10月月考理科数学试卷(解析版) 题型:解答题
(本小题满分12分)在平面直角坐标系xOy中,已知双曲线C1:2x2-y2=1.
(1)过C1的左顶点引C1的一条渐近线的平行线,求该直线与另一条渐近线及x轴围成的三角形的面积;
(2)设斜率为1的直线l交C1于P、Q两点.若l与圆x2+y2=1相切,求证:OP⊥OQ;
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com