【题目】已知函数是定义在上的偶函数,且当时,.
(1)求及的值;
(2)求函数在上的解析式;
(3)若关于的方程有四个不同的实数解,求实数的取值范围.
科目:高中数学 来源: 题型:
【题目】已知函数,.
(1)若,函数在区间上的最大值是,最小值是,求的值;
(2)用定义法证明在其定义域上是减函数;
(3)设, 若对任意,不等式恒成立,求实数的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设、分别是椭圆的左、右焦点.若是该椭圆上的一个动点,的最大值为1.
(1)求椭圆的方程;
(2)设直线与椭圆交于两点,点关于轴的对称点为(与不重合),则直线与轴是否交于一个定点?若是,请写出定点坐标,并证明你的结论;若不是,请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】2017年3月智能共享单车项目正式登陆某市,两种车型“小绿车”、“小黄车”采用分时段计费的方式,“小绿车”每30分钟收费元不足30分钟的部分按30分钟计算;“小黄车”每30分钟收费1元不足30分钟的部分按30分钟计算有甲、乙、丙三人相互独立的到租车点租车骑行各租一车一次设甲、乙、丙不超过30分钟还车的概率分别为,,,三人租车时间都不会超过60分钟甲、乙均租用“小绿车”,丙租用“小黄车”.
求甲、乙两人所付的费用之和等于丙所付的费用的概率;
2设甲、乙、丙三人所付的费用之和为随机变量,求的分布列和数学期望.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知参加某项活动的六名成员排成一排合影留念,且甲乙两人均在丙领导人的同侧,则不同的排法共有( )
A. 240种 B. 360种 C. 480种 D. 600种
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在正方体中,、分别为、的中点,,,如图.
(1)若交平面于点,证明:、、三点共线;
(2)线段上是否存在点,使得平面平面,若存在确定的位置,若不存在说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知在平面直角坐标系中,椭圆C:离心率为,其短轴长为2.
(1)求椭圆C的标准方程;
(2)如图,A为椭圆C的左顶点,P,Q为椭圆C上两动点,直线PO交AQ于E,直线QO交AP于D,直线OP与直线OQ的斜率分别为,,且, ,(为非零实数),求的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com