精英家教网 > 高中数学 > 题目详情
15.已知函数f(x)=|2x-1|+|ax-5|(0<a<5).
(1)当a=1时,求不等式f(x)≥9的解集;
(2)如果函数y=f(x)的最小值为4,求实数a的值.

分析 (1)当a=1时,分类讨论求不等式f(x)≥9的解集;
(2)f(x)的最小值在$\frac{1}{2}≤x≤\frac{5}{a}$时取得,即$\left\{\begin{array}{l}{0<a≤2}\\{f(x)_{min}=f(\frac{1}{2})=4}\end{array}\right.$或$\left\{\begin{array}{l}{2<a≤5}\\{f(x)_{min}=f(\frac{5}{a})=4}\end{array}\right.$,即可求实数a的值.

解答 解:(1)a=1时,f(x)=|2x-1|+|x-5|,
x<$\frac{1}{2}$时,不等式f(x)≥9等价于6-3x≥9,∴x≤-1,此时x≤-1;
$\frac{1}{2}≤$x≤5时,不等式f(x)≥9等价于x+4≥9,∴x≥5,此时x=5;
x>5时,不等式f(x)≥9等价于3x-6≥9,∴x>5,此时x>5;
综上所述,不等式的解集为{x|x≤-1或x>5};
(2)∵0<a<5,
∴x<$\frac{1}{2}$,f(x)=-(a+2)x+6单调递减;x>$\frac{5}{a}$,f(x)=(a+2)x-6单调递增,
∴f(x)的最小值在$\frac{1}{2}≤x≤\frac{5}{a}$时取得,
即$\left\{\begin{array}{l}{0<a≤2}\\{f(x)_{min}=f(\frac{1}{2})=4}\end{array}\right.$或$\left\{\begin{array}{l}{2<a≤5}\\{f(x)_{min}=f(\frac{5}{a})=4}\end{array}\right.$,解得a=2.

点评 本题考查不等式的解法,考查函数的最小值,考查分类讨论的数学思想,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.为了解某地区观众对大型综艺活动《中国好声音》的收视情况,随机抽取了100名观众进行调查,其中女性有55名.下面是根据调查结果绘制的观众收看该节目的场数与所对应的人数表:
P(K2≥k)0.050.01
k3.8416.635
场数91011121314
人数10182225205
将收看该节目场次不低于13场的观众称为“歌迷”,已知“歌迷”中有10名女性.
(1)根据已知条件完成下面的2×2列联表,并据此资料我们能否在犯错误的概率不超过0.05的前提下认为“歌迷”与性别有关?
非歌迷歌迷总计
总计
(2)将收看该节目所有场次(14场)的观众称为“超级歌迷”,已知“超级歌迷”中有2名女性,若从“超级歌迷”中任意选取2人,求至少有1名女性观众的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.已知{an}为等差数列,a3+a8=22,a6=8,则a5=14.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.设G是△ABC的重心,且$(sinA)\;\overrightarrow{GA}+(sinB)\;\overrightarrow{GB}+(sinC)\;\overrightarrow{GC}=\overrightarrow 0$,则∠B=$\frac{π}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设平面上向量$\overrightarrow a=(cosα,sinα)(0≤α<2π),\overrightarrow b=(-\frac{1}{2},\frac{{\sqrt{3}}}{2}),\overrightarrow a$与$\overrightarrow b$不共线,
(1)证明向量$\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\overrightarrow b$垂直;
(2)当两个向量$\sqrt{3}\overrightarrow a+\overrightarrow b$与$\overrightarrow a-\sqrt{3}\overrightarrow b$的模相等,求角α.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若Sn是等差数列{an}的前n项和且S8-S3=20,则S11的值为(  )
A.66B.48C.44D.12

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如果sinα•cosα<0,sinα•tanα>0,那么角$\frac{α}{2}$的终边在(  )
A.第一或第三象限B.第二或第四象限C.第一或第二象限D.第三或第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)满足:①对任意正实数x,恒有f(2x)=2f(x)成立;②当x∈(1,2)时,f(x)=2-x.若f(a)=f(2020),则满足条件的最小正实数a的值为(  )
A.28B.34C.36D.100

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知实数x,y满足$\left\{\begin{array}{l}{x-2y+1≥1}\\{x<2}\\{x+y-1≥0}\end{array}\right.$,z=|2x-2y-1|,则z的取值范围是(  )
A.[0,5)B.[0,5]C.[$\frac{5}{3}$,5)D.[$\frac{5}{3}$,5]

查看答案和解析>>

同步练习册答案