精英家教网 > 高中数学 > 题目详情
17.已知函数f(x)=Asin(ωx+φ)(A,ω,φ均为正的常数)的最小正周期为π,当x=$\frac{2π}{3}$时,函数f(x)取得最小值,则下列结论正确的是(  )
A.f(1)<f(-1)<f(0)B.f(0)<f(1)<f(-1)C.f(-1)<f(0)<f(1)D.f(1)<f(0)<f(-1)

分析 由周期为π可得ω,再由最小值可得φ值,由三角函数的单调性可得.

解答 解:∵函数f(x)=Asin(ωx+φ)的最小正周期为π,
∴ω=$\frac{2π}{π}$=2,故f(x)=Asin(2x+φ),
∵当x=$\frac{2π}{3}$时,函数f(x)取得最小值,
∴2×$\frac{2π}{3}$+φ=2kπ-$\frac{π}{2}$,解得φ=2kπ-$\frac{11π}{6}$,k∈Z,
故可取k=1时,φ=$\frac{π}{6}$,故f(x)=Asin(2x+$\frac{π}{6}$),
∴f(-1)=Asin(-2+$\frac{π}{6}$)<0,f(1)=Asin(2+$\frac{π}{6}$)>0,
f(0)=Asin$\frac{π}{6}$=$\frac{1}{2}$A>0,故f(-1)最小,
又sin(2+$\frac{π}{6}$)=sin(π-2-$\frac{π}{6}$)=sin($\frac{5π}{6}$-2)>sin$\frac{π}{6}$,
故f(1)>f(0),
综合可得f(-1)<f(0)<f(1)
故选:C

点评 本题考查正弦函数的图象,涉及函数的周期性和最值以及函数单调性比较式子大小,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

7.对于函数f(x),若存在区间A=[m,n](m<n),使得{y|y=f(x),x∈A}=A,则称函数f(x)为“可等域函数”,区间A为函数f(x)的一个“可等域区间”,已知函数f(x)=x2-2ax+b(a,b∈R).
(I)若b=0,a=1,g(x)=|f(x)|是“可等域函数”,求函数g(x)的“可等域区间”;
(Ⅱ)若区间[1,a+1]为f(x)的“可等域区间”,求a、b的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.有6本不同的书.
(1)分给3人,甲得1本,乙得2本,丙得3本,有多少种分法?
(2)分给甲、乙、丙3人,其中1人得1本,1人得两本,1人得三本,有多少种分法?
(3)平均分给甲、乙、丙3人,有多少种分法?
(4)分给3人,1人得4本,其余两人各得1本,有多少种分法?
(5)分给4人,每人至多得2本,至少得1本,有多少种分法?

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.已知f(x)的定义域为实数集R,?x∈R,f(3+2x)=f(7-2x),若f(x)=0恰有n个不同实数根,且这n个不同实数根之和等于75,则n=15.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.已知平面上三点A、B、C满足|$\overrightarrow{AB}$|=$\sqrt{3}$,|$\overrightarrow{BC}$|=$\sqrt{5}$,|$\overrightarrow{CA}$|=2$\sqrt{2}$,则$\overrightarrow{AB}•\overrightarrow{BC}+\overrightarrow{BC}•\overrightarrow{CA}+\overrightarrow{CA}•\overrightarrow{AB}$的值等于-8.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若对?x1∈(0,2],?x2∈[1,2],使4x1lnx1-x12+3+4x1x22+8ax1x2-16x1≥0成立,则实数a的取值范围$[{-\frac{1}{8},+∞})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.已知sinα+cosα=$\frac{1}{3}$,则sinαcosα=-$\frac{4}{9}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.实数a,b,c满足$\left\{\begin{array}{l}{a>0}\\{{b}^{2}=ac}\\{5b≥2(a+c)}\end{array}\right.$,则$\frac{5a+8b+4c}{a+b}$的取值范围是(  )
A.[$\frac{5}{12}$,$\frac{11}{6}$]B.(-∞,$\frac{5}{12}$]∪[$\frac{11}{6}$,+∞)C.[$\frac{20}{3}$,$\frac{37}{3}$]D.(-∞,$\frac{20}{3}$]∪[$\frac{37}{3}$,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.若cos(π-θ)=$\frac{1}{3}$,且θ为第二象限角,则sin($\frac{3π}{2}$-θ)=$\frac{1}{3}$.

查看答案和解析>>

同步练习册答案