精英家教网 > 高中数学 > 题目详情
20.求证:当x<2时,x3-6x2+12x-1<7.

分析 由x<2,运用作差,因式分解,结合不等式的性质,即可证明.

解答 证明:由x<2,可得
x3-6x2+12x-1-7
=(x3-8)-(6x2-12x)
=(x-2)(x2+2x+4)-6x(x-2)
=(x-2)(x2-4x+4)=(x-2)3<0,
则有x<2时,x3-6x2+12x-1<7.

点评 本题考查不等式的证明,注意运用作差和因式分解,考查运算能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

10.已知|$\overrightarrow{a}$|=4,|$\overrightarrow{b}$|=2,且$\overrightarrow{a}$与$\overrightarrow{b}$夹角为120°,则($\overrightarrow{a}$-2$\overrightarrow{b}$)•($\overrightarrow{a}$+$\overrightarrow{b}$)=12.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知圆心在原点,半径为R的圆与△ABC的边有公共点,其中A(4,0),B(6,8),C(2,4),则R的取值范围是$[\frac{{8\sqrt{5}}}{5},\;10]$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.“4<k<6”是“方程$\frac{x^2}{6-k}$+$\frac{y^2}{k-4}$=1表示椭圆”的(  )
A.既不充分也不必要条件B.充分不必要条件
C.充要条件D.必要不充分条件

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.在半径为R的球内截取一个最大的圆柱,则其体积之比V圆柱:V的比值为$\frac{{\sqrt{3}}}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.设F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{t{a}^{2}}$=1(a>0,t>0)的左、右焦点,过F1且且倾斜角为30°的直线与双曲线的右支相交于点P,若|PF2|=|F1F2|,则t=$\frac{\sqrt{3}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)虚轴上的端点B(0,b),右焦点F,若以B为圆心的圆与C的一条渐近线相切于点P,且$\overrightarrow{BP}$$∥\overrightarrow{PF}$,则该双曲线的离心率为(  )
A.$\sqrt{5}$B.2C.$\frac{1+\sqrt{3}}{2}$D.$\frac{1+\sqrt{5}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知有一反比例函数y=(a-3)x${\;}^{{a}^{2}-5a+5}$和一次函数y=x+a+1的图象交于A,B两点,求线段AB的长度.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.函数f(x)=lnx-ax2+x有两个零点,则实数a的取值范围是(  )
A.(0,1)B.(-∞,1)C.(-∞,$\frac{1+e}{{e}^{2}}$)D.(0,$\frac{1+e}{{e}^{2}}$)

查看答案和解析>>

同步练习册答案