精英家教网 > 高中数学 > 题目详情
5.设F1、F2分别为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{t{a}^{2}}$=1(a>0,t>0)的左、右焦点,过F1且且倾斜角为30°的直线与双曲线的右支相交于点P,若|PF2|=|F1F2|,则t=$\frac{\sqrt{3}}{2}$.

分析 设出双曲线的焦点,由条件可得∠PF2F1=120°,求得|PF1|,再由双曲线的定义和离心率公式计算即可得到.

解答 解:设双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{t{a}^{2}}$=1的焦点为F1(-c,0),
由于|PF2|=|F1F2|=2c,
由∠PF1F2=30°,则∠PF2F1=120°,
则有|PF1|=2$\sqrt{3}$c,
由双曲线的定义可得,|PF1|=2a+2c,
由2$\sqrt{3}$c=2a+2c,即有a=($\sqrt{3}$-1)c,
即e=$\frac{c}{a}$=$\frac{\sqrt{3}+1}{2}$,
由c2=(1+t)a2
又c2=(1+$\frac{\sqrt{3}}{2}$)a2
可得t=$\frac{\sqrt{3}}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$.

点评 本题考查双曲线的定义、方程和性质,考查离心率的求法,运用定义是解本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.正四面体的棱长为4$\sqrt{6}$,顶点都在同一球面上,则该球的表面积为(  )
A.36πB.72πC.144πD.288π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既不是奇函数,也不是偶函数的是(  )
A.y=x+exB.$y=x+\frac{1}{x}$C.$y={2^x}+\frac{1}{2^x}$D.$y=\sqrt{1+{x^2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.斜率为1的直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点,则线段AB的长为(  )
A.$4\sqrt{2}$B.$6\sqrt{2}$C.$8\sqrt{2}$D.8

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求证:当x<2时,x3-6x2+12x-1<7.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.点A为双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点,过右焦点F(1,0)且倾斜角为$\frac{π}{6}$的直线与直线x=a2交于点P.若△APF为等腰三角形,则双曲线的离心率为(  )
A.2B.$\sqrt{2}$C.3D.$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.△ABC中,AB=3,AC=2BC,则△ABC面积的最大值为3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.如果复数z满足|z+i|=|z-i|,那么|z+i|的最小值是(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.1D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知sin(α+β)=$\frac{12}{13}$,sinα=$\frac{4}{5}$,且α+β是第二象限角,α是第一象限角,求sinβ.

查看答案和解析>>

同步练习册答案