分析 建立如图所示的坐标系,则A(-$\frac{3}{2}$,0),B($\frac{3}{2}$,0)设C(x,y),(y≠0).根据AC=2BC,可得$\sqrt{(x+\frac{3}{2})^{2}+{y}^{2}}$=2$\sqrt{(x-\frac{3}{2})^{2}+{y}^{2}}$,化简即可得出.
解答
解:建立如图所示的坐标系,则A(-$\frac{3}{2}$,0),B($\frac{3}{2}$,0)设C(x,y),(y≠0)
∵AC=2BC,
∴$\sqrt{(x+\frac{3}{2})^{2}+{y}^{2}}$=2$\sqrt{(x-\frac{3}{2})^{2}+{y}^{2}}$,
化简可得:$(x-\frac{5}{2})^{2}$+y2=4,去掉$(\frac{1}{2},0)$或$(\frac{9}{2},0)$.
即C的轨迹是以($\frac{5}{2}$,0)为圆心,2为半径的圆,
∴三角形ABC的面积的最大值为=$\frac{1}{2}×3×2$=3.
故答案为:3.
点评 本题考查了三角形面积计算公式、轨迹方程,考查了数形结合方法、推理能力与计算能力,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 既不充分也不必要条件 | B. | 充分不必要条件 | ||
| C. | 充要条件 | D. | 必要不充分条件 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2 | C. | $\frac{1+\sqrt{3}}{2}$ | D. | $\frac{1+\sqrt{5}}{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{\sqrt{3}}{2}$ | B. | $\frac{\sqrt{2}}{2}$ | C. | $\frac{1}{2}$ | D. | 0 |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com