精英家教网 > 高中数学 > 题目详情
11.已知圆心在原点,半径为R的圆与△ABC的边有公共点,其中A(4,0),B(6,8),C(2,4),则R的取值范围是$[\frac{{8\sqrt{5}}}{5},\;10]$.

分析 求出原点到直线的距离为$\frac{8}{\sqrt{4+1}}$=$\frac{8\sqrt{5}}{5}$原点与B的距离为10,即可求出R的取值范围.

解答 解:由题意,直线AC的方程为y=$\frac{4-0}{2-4}$(x-4),即2x+y-8=0,
原点到直线的距离为$\frac{8}{\sqrt{4+1}}$=$\frac{8\sqrt{5}}{5}$,原点与B的距离为10,
∴R的取值范围是$[\frac{{8\sqrt{5}}}{5},\;10]$.
故答案为:$[\frac{{8\sqrt{5}}}{5},\;10]$.

点评 本题考查直线与圆的位置关系,考查点到直线距离公式的运用,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.过点Q(-1,-1)作已知直线l:y=$\frac{1}{4}$x+1的平行线.交双曲线$\frac{{x}^{2}}{4}$-y2=1于点M,N.
(1)证明:点Q是线段MN的中点.
(2)分别过点M,N作双曲线的切线l1,l2,证明:三条直线l,l1,l2相交于同-点.
(3)设P为直线l上一动点.过点P作双曲线的切线PA,PB,切点分别为A,B.证明:点Q在直线AB上.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,在三棱锥P-ABC中,E、F、G、H分别是AB、AC、PC、BC的中点,且PA=PB,AC=BC.
(Ⅰ)证明:AB⊥PC;
(Ⅱ)证明:平面PAB∥平面FGH.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.命题p:?x0∈R,3x02+4x0-5<0,那么¬P:?x∈R,3x2+4x-5≥0.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.已知平面内三点A,B,C满足|$\overrightarrow{AB}$|=|$\overrightarrow{CA}$|=1,|$\overrightarrow{BC}$|=$\sqrt{3}$,则$\overrightarrow{AB}$•$\overrightarrow{BC}$为(  )
A.$\frac{3}{2}$B.-$\frac{3}{2}$C.$\frac{\sqrt{3}}{2}$D.-$\frac{\sqrt{3}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数中,既不是奇函数,也不是偶函数的是(  )
A.y=x+exB.$y=x+\frac{1}{x}$C.$y={2^x}+\frac{1}{2^x}$D.$y=\sqrt{1+{x^2}}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.已知向量$\overrightarrow a,\;\overrightarrow b,\;\overrightarrow c$是同一平面内的三个向量,其中$\overrightarrow a=({1,\;2})$.
(1)若$|{\overrightarrow c}|=2\sqrt{5}$,且向量$\overrightarrow c$与向量$\overrightarrow a$反向,求$\overrightarrow c$的坐标;
(2)若$|{\overrightarrow b}|=\frac{{\sqrt{5}}}{2}$,且$(\overrightarrow a+2\overrightarrow b)•(2\overrightarrow a-\overrightarrow b)=\frac{15}{4}$,求$\overrightarrow a$与$\overrightarrow b$的夹角θ.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.求证:当x<2时,x3-6x2+12x-1<7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知|z|=1,设u=z2-i+1,则|u|的取值范围[-1$+\sqrt{2}$,1+$\sqrt{2}$].

查看答案和解析>>

同步练习册答案