| A. | $\frac{1}{8}$ | B. | $\frac{1}{4}$ | C. | $\frac{3}{4}$ | D. | $\frac{7}{8}$ |
分析 由题意知本题是一个几何概型,根据所给的条件很容易做出试验发生包含的事件对应的面积,而满足条件的事件是函数f(x)=$\frac{1}{2}$x3+ax-b在区间[0,1]上有且仅有一个零点,求出导函数,看出函数是一个增函数,有零点等价于在自变量区间的两个端点处函数值符号相反,得到条件,做出面积,根据几何概型概率公式得到结果.
解答
解:由题意知本题是一个几何概型,
∵a∈[0,1],
∴f'(x)=1.5x2+a≥0,
∴f(x)是增函数,
若在[0,1]有且仅有一个零点,则f(0)•f(1)≤0,
∴-b•(0.5+a-b)≤0,
即b(0.5+a-b)≥0,
∴b≤a+0.5,
由线性规划内容知全部事件的面积为1×1=1,满足条件的面积为1-$\frac{1}{2}×\frac{1}{2}×\frac{1}{2}$=$\frac{7}{8}$,
∴概率P=$\frac{7}{8}$,
故选:D.
点评 本题是一个几何概型,对于这样的问题,一般要通过把试验发生包含的事件同集合结合起来,根据集合对应的图形做出面积,用面积的比值得到结果.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{π}{2}$ | B. | $\frac{2π}{3}$ | C. | $\frac{5π}{6}$ | D. | π |
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ?x0∈R,sinx0≤-1 | B. | ?x0∈R,sinx0<-1 | C. | ?x∈R,sinx≤-1 | D. | ?x∈R,sinx<-1 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 1 | B. | $\sqrt{3}$ | C. | 2 | D. | 4-3$\sqrt{3}$ |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com