精英家教网 > 高中数学 > 题目详情
7.已知i为虚数单位,若(1+i) z=2i,则复数z=(  )
A.1-iB.1+iC.2-2iD.2+2i

分析 把已知的等式变形,利用复数代数形式的乘除运算化简得答案.

解答 解:由(1+i) z=2i,得$z=\frac{2i}{1+i}=\frac{2i(1-i)}{(1+i)(1-i)}=\frac{2+2i}{2}=1+i$,
故选:B.

点评 本题考查复数代数形式的乘除运算,是基础的计算题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

17.如图所示,该几何体是由一个直三棱柱ADE-BCF和一个正四棱锥P-ABCD组合而成,AD⊥AF,AE=AD=2.
(Ⅰ)证明:平面PAD⊥平面ABFE;
(Ⅱ)求正四棱锥P-ABCD的高h,使得该四棱锥的体积是三棱锥P-ABF体积的4倍.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.设三棱锥O-ABC中,$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,$\overrightarrow{OC}$=$\overrightarrow{c}$,G是△ABC的重心,则$\overrightarrow{OG}$等于(  )
A.$\overrightarrow{a}$+$\overrightarrow{b}$-$\overrightarrow{c}$B.$\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$C.$\frac{1}{2}$($\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$)D.$\frac{1}{3}$($\overrightarrow{a}$+$\overrightarrow{b}$+$\overrightarrow{c}$)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.已知函数f(x)=sinx-cosx且f′(x)=2f(x),则tanx=(  )
A.-3B.3C.1D.-1

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知函数:$f(x)=1+x-\frac{x^2}{2}+\frac{x^3}{3}-\frac{x^4}{4}+…+\frac{{{x^{2015}}}}{2015}$,$g(x)=1-x+\frac{x^2}{2}-\frac{x^3}{3}+\frac{x^4}{4}-…-\frac{{{x^{2015}}}}{2015}$,设函数F(x)=f(x+3)•g(x-5),且函数F(x)的零点均在区间[a,b](a<b,a,b∈Z)内,则b-a的最小值为(  )
A.8B.9C.10D.11

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.若函数$y={log_2}({x^2}-ax+3a)$在(2,+∞)上是单调增函数,则实数a的取值范围为(  )
A.(-∞,4]B.(-∞,4)C.(-4,4]D.[-4,4]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.在区间[0,1]上随机取两个实数a、b,则函数$f(x)=\frac{1}{2}{x^3}+ax-b$在区间[0,1]上有且只有一个零点的概率是(  )
A.$\frac{1}{8}$B.$\frac{1}{4}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.命题“?x∈R,都有log2x>0成立”的否定为(  )
A.?x0∈R,使log2x0≤0成立B.?x0∈R,使log2x>0成立
C.?x∈R,都有log2x≥0成立D.?x∈R,都有log2x>0成立

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.若tanα=$\frac{1}{2}$,tanβ=$\frac{1}{3}$,则tan(α-β)=$\frac{1}{7}$.

查看答案和解析>>

同步练习册答案