·ÖÎö £¨1£©$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$£¬a2=b2+c2£¬»¯Îª£º$a=\sqrt{3}c$£¬b=$\sqrt{2}$c£®ÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{3{c}^{2}}+\frac{{y}^{2}}{2{c}^{2}}$=1£¬¿ÉµÃ2x2+3y2=6c2£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º5x2-6x+3-6c2=0£¬ÀûÓÃ|AB|=$\sqrt{2[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\frac{{8\sqrt{3}}}{5}$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨b2+a2£©x2-2a2x+a2-a2b2=0£¬°Ñ¸ùÓëϵÊýµÄ¹ØÏµ´úÈë$\overrightarrow{OA}$$•\overrightarrow{OB}$=x1x2+y1y2=x1x2+£¨-x1+1£©£¨-x2+1£©=2x1x2-£¨x1+x2£©+1=0£¬»¯¼ò½ø¶øµÃ³ö£®
½â´ð ½â£º£¨1£©¡ß$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$£¬a2=b2+c2£¬»¯Îª£º$a=\sqrt{3}c$£¬b=$\sqrt{2}$c£®
¡àÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{3{c}^{2}}+\frac{{y}^{2}}{2{c}^{2}}$=1£¬¿ÉµÃ2x2+3y2=6c2£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÁªÁ¢$\left\{\begin{array}{l}{y=-x+1}\\{2{x}^{2}+3{y}^{2}=6{c}^{2}}\end{array}\right.$£¬»¯Îª£º5x2-6x+3-6c2=0£¬
¡àx1+x2=$\frac{6}{5}$£¬x1•x2=$\frac{3-6{c}^{2}}{5}$£¬
¡à|AB|=$\sqrt{2[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2[\frac{36}{25}-\frac{4£¨3-6{c}^{2}£©}{5}]}$=$\frac{{8\sqrt{3}}}{5}$£¬½âµÃc2=1£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÁªÁ¢$\left\{\begin{array}{l}{y=-x+1}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬»¯Îª£º£¨b2+a2£©x2-2a2x+a2-a2b2=0£¬
¡÷=4a4-4£¨b2+a2£©£¨a2-a2b2£©£¾0£¬
¡àx1+x2=$\frac{2{a}^{2}}{{a}^{2}+{b}^{2}}$£¬x1x2£¬=$\frac{{a}^{2}-{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£®
¡ß$\overrightarrow{OA}$$•\overrightarrow{OB}$=x1x2+y1y2=x1x2+£¨-x1+1£©£¨-x2+1£©=2x1x2-£¨x1+x2£©+1
=2¡Á$\frac{{a}^{2}-{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$-$\frac{2{a}^{2}}{{a}^{2}+{b}^{2}}$+1=0£¬
¡àa2+b2-2a2b2=0£¬
¡à$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{2{a}^{2}-1}$£®
¡ße¡Ê[$\frac{1}{2}$£¬$\frac{{\sqrt{2}}}{2}$]£¬¡à${e}^{2}=\frac{{c}^{2}}{{a}^{2}}$=1-$\frac{{a}^{2}}{{b}^{2}}$=1-$\frac{1}{2{a}^{2}-1}$¡Ê$[\frac{1}{4}£¬\frac{1}{2}]$£¬
¡à$\frac{7}{6}$¡Üa2¡Ü$\frac{3}{2}$£¬
¡à$\frac{\sqrt{42}}{6}$¡Üa¡Ü$\frac{\sqrt{6}}{2}$£¬
¡à2a¡Ê$[\frac{\sqrt{42}}{3}£¬\sqrt{6}]$£®
¡àÍÖÔ²µÄ³¤Ö᳤µÄ×î´óÖµÊÇ$\sqrt{6}$£®
µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²µÄÏཻÏÒ³¤ÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ð±ÂÊ´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
| $\overline{x}$ | $\overline{y}$ | $\overline{w}$ | $\sum_{i=1}^{8}$£¨xi-$\overline{x}$£©2 | $\sum_{i=1}^{8}$£¨wi-$\overline{w}$£©2 | $\sum_{i=1}^{8}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£© | $\sum_{i=}^{8}$£¨wi-$\overline{w}$£©£¨yi-$\overline{y}$£© |
| 46.6 | 563 | 6.8 | 289.8 | 1.6 | 1469 | 108.8 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 10 | B£® | 11 | C£® | 12 | D£® | 13 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 1.4Ã× | B£® | 3.0Ã× | C£® | 3.6Ã× | D£® | 4.5Ã× |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨4£¬14£© | B£® | £¨6£¬6£© | C£® | £¨3£¬18£© | D£® | £¨10£¬5£© |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com