12£®ÒÑÖªÖ±Ïßy=-x+1ÓëÍÖÔ²$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©ÏཻÓÚA¡¢BÁ½µã£®
£¨1£©ÈôÍÖÔ²µÄÀëÐÄÂÊΪ$\frac{{\sqrt{3}}}{3}$£¬Ïß¶ÎABµÄ³¤Îª$\frac{{8\sqrt{3}}}{5}$£¬ÇóÍÖÔ²µÄ·½³Ì£»
£¨2£©ÈôÏòÁ¿$\overrightarrow{OA}$ÓëÏòÁ¿$\overrightarrow{OB}$»¥Ïà´¹Ö±£¨ÆäÖÐOÎª×ø±êÔ­µã£©£¬µ±ÍÖÔ²µÄÀëÐÄÂÊe¡Ê[$\frac{1}{2}$£¬$\frac{{\sqrt{2}}}{2}$]ʱ£¬ÇóÍÖÔ²µÄ³¤Ö᳤µÄ×î´óÖµ£®

·ÖÎö £¨1£©$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$£¬a2=b2+c2£¬»¯Îª£º$a=\sqrt{3}c$£¬b=$\sqrt{2}$c£®ÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{3{c}^{2}}+\frac{{y}^{2}}{2{c}^{2}}$=1£¬¿ÉµÃ2x2+3y2=6c2£®ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º5x2-6x+3-6c2=0£¬ÀûÓÃ|AB|=$\sqrt{2[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\frac{{8\sqrt{3}}}{5}$£¬½â³ö¼´¿ÉµÃ³ö£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®Ö±Ïß·½³ÌÓëÍÖÔ²·½³ÌÁªÁ¢»¯Îª£º£¨b2+a2£©x2-2a2x+a2-a2b2=0£¬°Ñ¸ùÓëϵÊýµÄ¹ØÏµ´úÈë$\overrightarrow{OA}$$•\overrightarrow{OB}$=x1x2+y1y2=x1x2+£¨-x1+1£©£¨-x2+1£©=2x1x2-£¨x1+x2£©+1=0£¬»¯¼ò½ø¶øµÃ³ö£®

½â´ð ½â£º£¨1£©¡ß$\frac{c}{a}$=$\frac{\sqrt{3}}{3}$£¬a2=b2+c2£¬»¯Îª£º$a=\sqrt{3}c$£¬b=$\sqrt{2}$c£®
¡àÍÖÔ²µÄ·½³ÌΪ£º$\frac{{x}^{2}}{3{c}^{2}}+\frac{{y}^{2}}{2{c}^{2}}$=1£¬¿ÉµÃ2x2+3y2=6c2£®
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÁªÁ¢$\left\{\begin{array}{l}{y=-x+1}\\{2{x}^{2}+3{y}^{2}=6{c}^{2}}\end{array}\right.$£¬»¯Îª£º5x2-6x+3-6c2=0£¬
¡àx1+x2=$\frac{6}{5}$£¬x1•x2=$\frac{3-6{c}^{2}}{5}$£¬
¡à|AB|=$\sqrt{2[£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}]}$=$\sqrt{2[\frac{36}{25}-\frac{4£¨3-6{c}^{2}£©}{5}]}$=$\frac{{8\sqrt{3}}}{5}$£¬½âµÃc2=1£®
¡àÍÖÔ²µÄ±ê×¼·½³ÌΪ£º$\frac{{x}^{2}}{3}+\frac{{y}^{2}}{2}$=1£®
£¨2£©ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£®ÁªÁ¢$\left\{\begin{array}{l}{y=-x+1}\\{\frac{{x}^{2}}{{a}^{2}}+\frac{{y}^{2}}{{b}^{2}}=1}\end{array}\right.$£¬»¯Îª£º£¨b2+a2£©x2-2a2x+a2-a2b2=0£¬
¡÷=4a4-4£¨b2+a2£©£¨a2-a2b2£©£¾0£¬
¡àx1+x2=$\frac{2{a}^{2}}{{a}^{2}+{b}^{2}}$£¬x1x2£¬=$\frac{{a}^{2}-{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$£®
¡ß$\overrightarrow{OA}$$•\overrightarrow{OB}$=x1x2+y1y2=x1x2+£¨-x1+1£©£¨-x2+1£©=2x1x2-£¨x1+x2£©+1
=2¡Á$\frac{{a}^{2}-{a}^{2}{b}^{2}}{{a}^{2}+{b}^{2}}$-$\frac{2{a}^{2}}{{a}^{2}+{b}^{2}}$+1=0£¬
¡àa2+b2-2a2b2=0£¬
¡à$\frac{{b}^{2}}{{a}^{2}}$=$\frac{1}{2{a}^{2}-1}$£®
¡ße¡Ê[$\frac{1}{2}$£¬$\frac{{\sqrt{2}}}{2}$]£¬¡à${e}^{2}=\frac{{c}^{2}}{{a}^{2}}$=1-$\frac{{a}^{2}}{{b}^{2}}$=1-$\frac{1}{2{a}^{2}-1}$¡Ê$[\frac{1}{4}£¬\frac{1}{2}]$£¬
¡à$\frac{7}{6}$¡Üa2¡Ü$\frac{3}{2}$£¬
¡à$\frac{\sqrt{42}}{6}$¡Üa¡Ü$\frac{\sqrt{6}}{2}$£¬
¡à2a¡Ê$[\frac{\sqrt{42}}{3}£¬\sqrt{6}]$£®
¡àÍÖÔ²µÄ³¤Ö᳤µÄ×î´óÖµÊÇ$\sqrt{6}$£®

µãÆÀ ±¾Ì⿼²éÁËÍÖÔ²µÄ±ê×¼·½³Ì¼°ÆäÐÔÖÊ¡¢Ö±ÏßÓëÍÖÔ²µÄÏཻÏÒ³¤ÎÊÌâ¡¢Ò»Ôª¶þ´Î·½³ÌµÄ¸ùÓëϵÊýµÄ¹ØÏµ¡¢Ð±ÂÊ´¹Ö±ÓëÊýÁ¿»ýµÄ¹ØÏµ£¬¿¼²éÁËÍÆÀíÄÜÁ¦Óë¼ÆËãÄÜÁ¦£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

2£®Ä³¹«Ë¾ÎªÈ·¶¨ÏÂÒ»Äê¶ÈͶÈëijÖÖ²úÆ·µÄÐû´«·Ñ£¬ÐèÁ˽âÄêÐû´«·Ñx£¨µ¥Î»£ºÇ§¿Ë£©¶ÔÄêÏûÊÛÁ¿y£¨µ¥Î»£ºt£©ºÍÄêÀûÈóz£¨µ¥Î»£ºÇ§¿Ë£©µÄÓ°Ï죬¶Ô½ü8ÄêµÄÐû´«·ÑxiºÍÄêÏúÊÛÁ¿yi£¨i=1£¬2£¬3£¬..8£©Êý¾Ý×÷Á˳õ²½´¦Àí£¬µÃµ½ÏÂÃæµÄÉ¢µãͼ¼°Ò»Ð©Í³¼ÆÁ¿µÄÖµ£®
$\overline{x}$$\overline{y}$$\overline{w}$$\sum_{i=1}^{8}$£¨xi-$\overline{x}$£©2 $\sum_{i=1}^{8}$£¨wi-$\overline{w}$£©2$\sum_{i=1}^{8}$£¨xi-$\overline{x}$£©£¨yi-$\overline{y}$£©$\sum_{i=}^{8}$£¨wi-$\overline{w}$£©£¨yi-$\overline{y}$£©
46.65636.8289.81.61469108.8
±íÖУºwi=$\sqrt{{x}_{i}}$$\overline{w}$=$\frac{1}{8}$$\sum_{i=1}^{8}$wi
£¨¢ñ£©¸ù¾ÝÉ¢µãͼÅжϣ¬y=a+bxÓëy=c+d $\sqrt{x}$£¬ÄÄÒ»¸öÊÊÒË×÷ΪÄêÏúÊÛÁ¿y¹ØÓÚÄêÐû´«·ÑxµÄ»Ø¹é·½³ÌÀàÐÍ£¨¸ø³öÅжϼ´¿É£¬²»±ØËµÃ÷ÀíÓÉ£©£»
£¨¢ò£©¸ù¾Ý£¨I£©µÄÅжϽá¹û¼°±íÖÐÊý¾Ý£¬½¨Á¢y¹ØÓÚxµÄ»Ø¹é·½³Ì£»
£¨¢ó£©ÒÑÖªÕâÖÖ²úÆ·µÄÄêÀûÈózÓëx£¬yµÄ¹ØÏµÎªz=0.2y-x£¬¸ù¾Ý£¨II£©µÄ½á¹û»Ø´ðÏÂÁÐÎÊÌ⣺
£¨i£©µ±ÄêÐû´«·Ñx=49ʱ£¬ÄêÏúÊÛÁ¿¼°ÄêÀûÈóµÄÔ¤±¨ÖµÊ±¶àÉÙ£¿
£¨ii£©µ±ÄêÐû´«·ÑxΪºÎֵʱ£¬ÄêÀûÈóµÄÔ¤±¨Öµ×î´ó£¿²¢Çó³ö×î´óÖµ
¸½£º¶ÔÓÚÒ»×éÊý¾Ý£¨u1£¬v1£©£¬£¨u2£¬v2£©¡­..£¨un£¬vn£©£¬Æä»Ø¹éÏß$\widehat{v}$=¦Á+¦ÂuµÄбÂʺͽؾàµÄ×îС¶þ³Ë¹À¼Æ·Ö±ðΪ£º¦Â=$\frac{\sum_{i=1}^{n}£¨{u}_{1}-\overline{u}£©£¨{v}_{1}-\overline{v}£©}{\sum_{i=1}^{n}£¨{u}_{1}-\overline{u}£©^{2}}$£¬¦Á=$\overline{v}$-¦Â$\overline{u}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

3£®ÒÑÖªx£¾0£¬º¯Êý$y=\frac{36}{x}+x$µÄ×îСֵÊÇ£¨¡¡¡¡£©
A£®10B£®11C£®12D£®13

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

20£®º¯Êý$y=4-x-\frac{1}{x}£»£¨x¡Ý2£©$µÄ×î´óÖµÊÇ$\frac{3}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

7£®Ò»Á¾¿¨³µ¿í2.7Ã×£¬Òª¾­¹ýÒ»¸ö°ë¾¶Îª4.5Ã׵İëÔ²ÐÎËíµÀ£¬¸ÃËíµÀΪ˫Ïò³µµÀ£¬ÖмäÓиôÀë´ø£¬ÔòÕâÁ¾¿¨³µµÄƽ¶¥³µÅñÅñ¶¥¾àÀëµØÃæµÄ¸ß¶È²»µÃ³¬¹ý£¨¡¡¡¡£©
A£®1.4Ã×B£®3.0Ã×C£®3.6Ã×D£®4.5Ã×

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

17£®ÔÚËãʽ¡°30-¡÷=4¡Á¡õ¡±Öеġ÷£¬¡õ·Ö±ðÌîÈëÁ½¸öÕýÕûÊý£¬Ê¹ËüÃǵĵ¹ÊýºÍ×îС£¬ÔòÕâÁ½¸öÊý¹¹³ÉµÄÊý¶Ô£¨¡÷£¬¡õ£©Ó¦Îª£¨¡¡¡¡£©
A£®£¨4£¬14£©B£®£¨6£¬6£©C£®£¨3£¬18£©D£®£¨10£¬5£©

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

4£®ÒÑ֪ʵÊýx£¬yÂú×㣨x-3£©2+y2=3£¬Ôò$\frac{y}{x-1}$µÄ×î´óÖµÊÇ$\sqrt{3}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®ÈçͼËùʾµÄ³ÌÐò¿òͼ£¬ÈôÊä³öµÄS=41£¬ÔòÅжϿòÄÚÓ¦ÌîÈëµÄÌõ¼þÊÇk£¾4£¿£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

2£®ÒÑÖª¶þ´Îº¯Êýf£¨x£©=ax2+2ax+1ÔÚÇø¼ä[-2£¬3]ÉϵÄ×î´óֵΪ5£¬ÔòaµÄֵΪ$\frac{4}{15}$»ò-4£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸