精英家教网 > 高中数学 > 题目详情
1.某汽车以每小时65千米的速度从A地开往260千米远的B地,到达B地后立即以每小时52千米的速度返回A地,试将汽车离开A 地后行驶路程s表示为时间t的函数s=$\left\{{\begin{array}{l}{65t(0≤t≤4)}\\{260+52(t-4)(4<t≤9)}\end{array}}\right.$.

分析 由题意,得到汽车来回速度不同,所以要分段表示行程与时间的关系.

解答 解:由题意,汽车以每小时65千米的速度从A地开往260千米远的B地,行程为s=65t,t∈[0,4];
到达B地后立即以每小时52千米的速度返回A地,行程为52(t-4),t∈(4,9];
所以汽车离开A 地后行驶路程s表示为时间t的函数s=$\left\{\begin{array}{l}{65t,0≤t≤4}\\{260+52(t-4),4<t≤9}\end{array}\right.$.
故答案为:s=$\left\{\begin{array}{l}{65t,0≤t≤4}\\{260+52(t-4),4<t≤9}\end{array}\right.$.

点评 不同考查了应用题中,函数解析式的建立;由于在不同的时间,汽车离开甲地的路程有所不同,所以函数的解析式是分段的,要注意变量范围的确定.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.(1)求经过两直线l1:2x-3y-3=0和l2:x+y+2=0的交点且与直线l:3x+y-1=0垂直的直线方程;
(2)若两平行直线l1:2x+y-4=0和l2:y=-2x-k-2的距离不大于$\sqrt{5}$,求k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.下面伪代码表示的算法中,最后一次输出的I的值是(  )
For I=2to 13Step 3
Print I
Next I
Print“I=”,I.
A.5B.8C.11D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=x2,g(x)=x+2,则f(g(3))=(  )
A.25B.11C.45D.27

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.已知x,y满足$\left\{\begin{array}{l}{y≥x}\\{x+y≤2}\\{x≥a}\end{array}\right.$且z=2x+y的最大值是最小值的4倍,则a的值是$\frac{1}{4}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.如图所示的程序框图,输出的W=22.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知P是△ABC所在平面内一点,D为AB的中点,若2$\overrightarrow{PD}$+$\overrightarrow{PC}$=(λ+1)$\overrightarrow{PA}$+$\overrightarrow{PB}$,且△PBA与△PBC的面积相等,则实数λ的值为-1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.设α∈(0,$\frac{π}{3}$),满足$\sqrt{6}$sinα+$\sqrt{2}$cosα=$\sqrt{3}$.
(1)求cos(α+$\frac{π}{6}$)的值;
(2)求cos(2α+$\frac{π}{12}$)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.口袋内有一些大小、形状完全相同的红球、黄球和白球,从中任意摸出一球,摸出的球是红球或黄球的概率为0.4,摸出的球是红球或白球的概率为0.9,那么摸出的球是黄球或白球的概率0.7.

查看答案和解析>>

同步练习册答案