精英家教网 > 高中数学 > 题目详情
10.设α∈(0,$\frac{π}{3}$),满足$\sqrt{6}$sinα+$\sqrt{2}$cosα=$\sqrt{3}$.
(1)求cos(α+$\frac{π}{6}$)的值;
(2)求cos(2α+$\frac{π}{12}$)的值.

分析 (1)利用两角和的正弦函数求出三角函数值,利用同角三角函数基本关系式求解即可.
(2)利用两角和与差的余弦函数以及二倍角公式化简求解即可.

解答 解:(1)α∈(0,$\frac{π}{3}$),满足$\sqrt{6}$sinα+$\sqrt{2}$cosα=$\sqrt{3}$.
可得2$\sqrt{2}$($\frac{\sqrt{3}}{2}$sinα+$\frac{1}{2}$cosα)=$\sqrt{3}$.
可得sin(α+$\frac{π}{6}$)=$\frac{\sqrt{6}}{4}$.
∴cos(α+$\frac{π}{6}$)=$\sqrt{1-(\frac{\sqrt{6}}{4})^{2}}$=$\frac{\sqrt{10}}{4}$.
(2)由(1)可得cos2(α+$\frac{π}{6}$)=1-2$(\frac{\sqrt{6}}{4})^{2}$=$\frac{1}{4}$,
sin2(α+$\frac{π}{6}$)=2×$\frac{\sqrt{10}}{4}×\frac{\sqrt{6}}{4}$=$\frac{\sqrt{15}}{4}$.
cos(2α+$\frac{π}{12}$)=cos[2(α+$\frac{π}{6}$)-$\frac{π}{4}$]=cos2(α+$\frac{π}{6}$)cos$\frac{π}{4}$+sin2(α+$\frac{π}{6}$)sin$\frac{π}{4}$
=$\frac{1}{4}×\frac{\sqrt{2}}{2}$$+\frac{\sqrt{15}}{4}×\frac{\sqrt{2}}{2}$
=$\frac{\sqrt{30}+\sqrt{2}}{8}$.

点评 本题考查两角和与差的三角函数,三角函数化简求值,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

20.已知函数f(x)=lnx,g(x)=f(x)+ax2+bx,其中函数g(x)的图象在点(1,g(1))处的切线平行于x轴.
(1)确定a与b的关系;
(2)若a≥0,试讨论函数g(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.某汽车以每小时65千米的速度从A地开往260千米远的B地,到达B地后立即以每小时52千米的速度返回A地,试将汽车离开A 地后行驶路程s表示为时间t的函数s=$\left\{{\begin{array}{l}{65t(0≤t≤4)}\\{260+52(t-4)(4<t≤9)}\end{array}}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.如图,在直角梯形ABCD中,∠DAB=∠CBA=90°,∠DCB=60°,AD=1,AB=$\sqrt{3}$,在直角梯形内挖去一个以A为圆心,以AD为半径的四分之一圆,得到图中阴影部分,求图中阴影部分绕直线AB旋转一周所得旋转体的体积、表面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.已知x=2a,则命题:“?y∈(0,+∞),xy=1”的否定为(  )
A.?y∈(0,+∞),xy≠1B.?y∈(-∞,0),xy=1C.?y∈(0,+∞),xy≠1D.?y∈(-∞,0),xy=1

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

15.已知函数f(2x)的定义域是[-1,1],则函数f(2x+1)的定义域为[-$\frac{1}{4}$,$\frac{1}{2}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.f(x)=lgx,g(x)=3x,则f[g(x)]=xlg3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平行四边形ABCD中,∠BAD=60°,AB=4,AD=2,E,F分别是BC,CD边的中点,则|$\overrightarrow{AE}$+$\overrightarrow{AF}$|=$3\sqrt{7}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若函数f(x)是奇函数,且有三个零点x1、x2、x3,则x1+x2+x3的值为(  )
A.-1B.不确定C.3D.0

查看答案和解析>>

同步练习册答案