精英家教网 > 高中数学 > 题目详情

【题目】等差数列{an}的前n项和为Sn , 数列{bn}是等比数列,满足a1=3,b1=1,b2+S2=10,a5﹣2b2=a3
(1)求数列{an}和{bn}的通项公式;
(2)令cn=anbn , 设数列{cn}的前n项和为Tn , 求Tn

【答案】
(1)解:设数列{an}的公差为d,数列{bn}的公比为q,则

,得 ,解得

所以an=3+2(n﹣1)=2n+1,


(2)解:由(1)可知cn=(2n+1)2n1

∴Tn=3+5×2+7×22+…+(2n+1)2n1,…①

…②

①﹣②得:﹣Tn=3+2×(2+22+…+2n1)﹣(2n+1)2n=1+2+22+…+2n﹣(2n+1)2n=2n+1﹣1﹣(2n+1)2n=(1﹣2n)2n﹣1,

∴Tn=(2n﹣1)2n+1


【解析】(1)利用等差数列与等比数列的通项公式即可得出.(2)利用“错位相减法”、等比数列的求和公式即可得出.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费共0.9万元,汽车的维修保养费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……依等差数列逐年递增.

(1)求该车使用了3年的总费用(包括购车费用)为多少万元?

(2)设该车使用年的总费用(包括购车费用)为),试写出的表达式;

(3)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知圆,直线

(1)求证:直线过定点;

(2)求直线被圆所截得的弦长最短时的值;

(3)已知点,在直线MC上(C为圆心),存在定点N(异于点M),满足:对于圆C上任一点P,都有为一常数,试求所有满足条件的点N的坐标及该常数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数.

(Ⅰ)若,求函数的值域

(Ⅱ)若函数单调,求实数的取值范围;

是函数为实数)的其中两个零点,且,求当变化时, 的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆的中心在原点,焦点在 轴上,离心率为 ,且经过点 ,直线 交椭圆于 两不同的点.
(1)求椭圆的方程;
(2)若直线 不过点 ,求证:直线 轴围成等腰三角形.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在如图所示的多面体ABCDEF中,四边形ABCD为正方形,底面ABFE为直角梯形,∠ABF为直角, , 平面ABCD⊥平面ABFE.

(1)求证:DB⊥EC;
(2)若AE=AB,求二面角C﹣EF﹣B的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】给出30个数:1,2,4,7,,其规律是:第1个数是1,第2个数比第1个数大1,第3个数比第2个数大2,第4个数比第3个数大3,以此类推,要计算这30个数的和,现已给出了解决该问题的算法框图(如图所示).

(1)请在图中处理框内①处和判断框中的②处填上合适的语句,使之能完成该题算法功能;

(2)根据算法框图写出算法语句.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知随机变量 满足 .若 ,则( )
A.
B.
C.
D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某种汽车购买时费用为16.9万元,每年应交付保险费、汽油费共0.9万元,汽车的维修保养费为:第一年0.2万元,第二年0.4万元,第三年0.6万元,……依等差数列逐年递增.

(1)求该车使用了3年的总费用(包括购车费用)为多少万元?

(2)设该车使用年的总费用(包括购车费用)为),试写出的表达式;

(3)求这种汽车使用多少年报废最合算(即该车使用多少年平均费用最少).

查看答案和解析>>

同步练习册答案