精英家教网 > 高中数学 > 题目详情
11.直线l1:x+y+2=0在y轴上的截距为-2;将l1绕它与x轴的交点逆时针旋转90°,所得到的直线l2的方程为x-y+2=0;圆心在原点,且与直线l1相切的圆的方程是x2+y2=2.

分析 令x=0,可得直线l1:x+y+2=0在y轴上的截距;求出直线l2的斜率为1,即可求出直线l2的方程;求出圆心到直线l1的距离,即可求出圆心在原点,且与直线l1相切的圆的方程.

解答 解:令x=0,可得y=-2,即直线l1:x+y+2=0在y轴上的截距为-2;
令y=0,可得x=-2,将l1绕它与x轴的交点逆时针旋转90°,所得到的直线l2的斜率为1,方程为x-y+2=0;
圆心到直线l1的距离为$\frac{2}{\sqrt{2}}$=$\sqrt{2}$,∴圆心在原点,且与直线l1相切的圆的方程是x2+y2=2.
故答案为:-2;x-y+2=0;x2+y2=2.

点评 本题考查直线、圆的方程,考查学生的计算能力,比较基础.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

1.如图,在四边形ABCD中,已知∠BAD=60°,∠ABC=90°,∠BCD=120°,对角线AC,BD交于点S,且DS=2SB,P为AC的中点.
求证:(Ⅰ)∠PBD=30°;
(Ⅱ)AD=DC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.学校为了调查学生在课外读物方面的支出情况,抽出了一个容量为n的样本,其频率分布直方图如右图所示,其中支出在[40,50)元的同学有39人,则n的值为(  )
A.100B.120C.130D.390

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.在平面直角坐标系xoy中,设A,B为函数f(x)=1-x2的图象与x轴的两个交点,C,D为函数f(x)的图象上的两个动点,且C,D在x轴上方(不含x轴),则$\overrightarrow{AC}$•$\overrightarrow{BD}$的取值范围为(-4,$\frac{3\sqrt{3}}{2}$-$\frac{9}{4}$].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.设有一个4×4网格,其各个最小的正方形的边长为4cm,现用直径为2cm的硬币投掷到此网格上,设每次投掷都落在最大的正方形内或与最大的正方形有公共点,则硬币落下后完全在最大的正方形内的概率$\frac{196}{320+π}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知正项数列{an}满足a1=1,$\sqrt{{a}_{n+1}}$=$\sqrt{{a}_{n}}$$+\frac{{a}_{n}}{(n+1)^{2}}$,n∈N*
(Ⅰ)试比较an与an+1的大小,并说明理由;
(Ⅱ)求证:$\frac{1}{n+1}$$-\frac{1}{n+2}$$<\frac{1}{\sqrt{{a}_{n}}}$$-\frac{1}{\sqrt{{a}_{n+1}}}$$<\frac{1}{(n+1)^{2}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.如图给出的是计算$\frac{1}{1}$+$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+…+$\frac{1}{2015}$的一个程序框图,其中判断框内应填入的条件是(  )
A.i<1008B.i>1008C.i<1009D.i>1009

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.设向量$\overrightarrow{a}$=(cos2x,sinx),$\overrightarrow{b}$=(1,2cosx),将函数f(x)=$\overrightarrow{a}$,$\overrightarrow{b}$的图象向左平移φ(0<φ<π)个单位,得到函数g(x)的图象,若g(x)为奇函数,则φ的最小值为(  )
A.$\frac{π}{4}$B.$\frac{3π}{8}$C.$\frac{π}{2}$D.π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.如图,F是双曲线C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a,b>0)的右焦点,过F作渐近线的垂线,垂足为P,与另一条渐近线相交于Q,若|PF|=|PQ|,则C的离心率为(  )
A.$\sqrt{3}$B.2$\sqrt{2}$C.2D.$\sqrt{5}$

查看答案和解析>>

同步练习册答案