精英家教网 > 高中数学 > 题目详情
3.如图给出的是计算$\frac{1}{1}$+$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+…+$\frac{1}{2015}$的一个程序框图,其中判断框内应填入的条件是(  )
A.i<1008B.i>1008C.i<1009D.i>1009

分析 由已知中的程序框图可知:该程序的功能是利用循环结构计算并输出变量S的值,模拟程序的运行过程,分析循环中各变量值的变化情况,可得答案.

解答 解:由已知中程序的功能是计算$\frac{1}{1}$+$\frac{1}{3}$+$\frac{1}{5}$+$\frac{1}{7}$+…+$\frac{1}{2015}$的值,
累加项为$\frac{1}{n}$,n的步长为2,
故循环要执行$\frac{2015-1}{2}+1$=1008次,
由于计数器的初值为1,步长为1,
故终值为1008,
即i≤1008时,进行循环,i>1008时,退出循环,
故选:B

点评 本题考查的知识点是程序框图,当循环的次数不多,或有规律时,常采用模拟循环的方法解答.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.已知复数z=$\frac{2}{1-i}$+i(i是虚数单位),则|z|=(  )
A.1B.$\sqrt{3}$C.2D.$\sqrt{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在平面直角坐标系xoy中,P是曲线C:y=ex上的一点,直线l:x+2y+c=0经过点P,且与曲线C在P点处的切线垂直,则实数c的值为-4-ln2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.直线l1:x+y+2=0在y轴上的截距为-2;将l1绕它与x轴的交点逆时针旋转90°,所得到的直线l2的方程为x-y+2=0;圆心在原点,且与直线l1相切的圆的方程是x2+y2=2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.能够把椭圆$\frac{{x}^{2}}{4}$+y2=1的周长和面积同时分为相等的两部分的函数称为椭圆的“可分函数”,下列函数不是椭圆的“可分函数”为(  )
A.f(x)=4x3+xB.f(x)=ln$\frac{5-x}{5+x}$C.f(x)=sin$\frac{x}{2}$D.f(x)=ex+e-x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}满足a1=1,a2=3,a3=7且an+3=an+2+an+1-an,则a2015=6043.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.若集合M={y|y=sinx},N={x|x2-4≤0},则M∩N=(  )
A.ΦB.[-2,2]C.[-1,1]D.{-1,1}

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.已知直线y=-x+1与圆C:x2+y2-4x+3=0相较于A,B两点,则|AB|的值为(  )
A.$\frac{1}{2}$B.$\frac{\sqrt{2}}{2}$C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=sin(2ωx+$\frac{3}{5}$),且直线y=-1与函数交点之间的最短距离为$\frac{3}{π}$,求ω的值.

查看答案和解析>>

同步练习册答案