精英家教网 > 高中数学 > 题目详情
已知曲线C:
x2
3
-y2=1的左右焦点分别为F1F2,过点F2的直线与双曲线C的右支相交于P,Q两点,且点P的横坐标为2,则PF1Q的周长为(  )
A、
16
3
3
B、5
3
C、
14
3
3
D、4
3
考点:双曲线的简单性质
专题:计算题,直线与圆,圆锥曲线的定义、性质与方程
分析:求出双曲线的a,b,c,求得焦点,判断三角形PF1Q为等腰三角形,PQ⊥x轴,令x=2,求得|PQ|,再由勾股定理,求得|PF1|,即可求得周长.
解答: 解:双曲线C:
x2
3
-y2=1的a=
3
,b=1,
c=
a2+b2
=2,
则F1(-2,0),F2(2,0),
由于点P的横坐标为2,则PQ⊥x轴,
令x=2则有y2=
4
3
-1=
1
3

即y=±
3
3
.即|PF2|=
3
3

|PF1|=
|PF2|2+|F1F2|2
=
1
3
+4×4
=
7
3
3

则三角形PF1Q的周长为|PF1|+|QF1|+|PQ|=
7
3
3
+
7
3
3
+
2
3
3

=
16
3
3

故选:A.
点评:本题考查双曲线的方程和性质,考查直线与双曲线的关系,考查运算能力,属于基础题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知f(x)=x2+2(a-1)+3的单调递减区间是(-∞,3],则实数a为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知直线ax+y-2=0与圆心为C的圆(x-1)2+(y-a)2=4相交于A,B两点,且△ABC为等边三角形,则实数a=(  )
A、±
3
3
B、±
1
3
C、1或7
D、4±
15

查看答案和解析>>

科目:高中数学 来源: 题型:

已知数列{an}中,a1=1,二次函数f(x)=
1
2
an•x2+(2-n-an+1)•x的对称轴为x=
1
2

(1)试证明{2nan}是等差数列,并求{an}通项公式;
(2)设{an}的前n项和为Sn,试求使得Sn<3成立的n值,并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

若数据x1,x2,…,x10的均值为
.
x
,标准差为σ,则数据2x1+1,2x2+1,…,2x10+1的均值和标准差分别为(  )
A、
.
x
和2σ
B、2
.
x
+1和2σ+1
C、2
.
x
+1和2σ
D、2
.
x
+1和4σ

查看答案和解析>>

科目:高中数学 来源: 题型:

已知由长方体截去一个棱锥所得几何体的三视图如图所示,则该几何体的体积为(  )
A、16
B、
40
3
C、
32
3
D、
16
3

查看答案和解析>>

科目:高中数学 来源: 题型:

若实数x,y满足
x+y≥1
x-y+1≥0
6x-y-14≤0
,则(
1
9
)x
(
1
3
)y
的最小值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知抛物线C的顶点在坐标原点,焦点与双曲线:
x2
7
-
y2
2
=1
的右焦点重合,则抛物线C的方程是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

用0,1,2,3,4,5这六个数字
(1)可组成多少个不同的自然数?
(2)可组成多少个无重复数字的五位数?
(3)可组成多少个无重复数字的五位奇数?
(4)可组成多少个无重复数字的能被5整除的五位数?
(5)可组成多少个无重复数字的且大于31250的五位数?

查看答案和解析>>

同步练习册答案