精英家教网 > 高中数学 > 题目详情
15.已知x、y满足约束条件$\left\{\begin{array}{l}{x-4y≤-3}\\{3x+5y≤25}\\{x≥1}\end{array}\right.$,则log${\;}_{\frac{1}{3}}$(2x+y)的最大值是-1.

分析 设z=2x+y,要求log${\;}_{\frac{1}{3}}$(2x+y)的最大值,等价为求z=2x+y的最小值,利用线性规划进行求解即可.

解答 解:作出不等式对应的平面区域如图:
设z=2x+y,要求log${\;}_{\frac{1}{3}}$(2x+y)的最大值,等价为求z=2x+y的最小值,
由z=2x+y,得y=-2x+z,
平移直线y=-2x+z,由图象可知当直线y=-2x+z经过$\left\{\begin{array}{l}{x=1}\\{x-4y=-3}\end{array}\right.$的交点时,
直线y=-2x+z的截距最小,
由图可知,zmin=2×1+1=3.
此时log${\;}_{\frac{1}{3}}$(2x+y)的最大值为log${\;}_{\frac{1}{3}}$3=-1,
故答案为:-1.

点评 本题主要考查线性规划的基本应用,根据z的几何意义,利用数形结合是解决本题的关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.计算:
(1)(1.5)-2+(-9.6)0-(3$\frac{3}{8}$)-${\;}^{\frac{2}{3}}$+$\sqrt{(π-4)^{2}}$;
(2)lg16+3lg5-lg$\frac{1}{5}$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.命题“?x∈[1,2],x2+ax+9≥0”是假命题,则实数a的取值范围是(-∞,-$\frac{13}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图所示,有一半径为R的半圆形钢板,计划剪裁成一等腰梯形ABCD的形状,它的下底AB是⊙O的直径,上底CD的端点在圆周上.
(1)写出这个梯形周长y与腰长x间的函数关系式,并求出它的定义域;
(2)求这个梯形周长的最大值及此时的腰长.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=x2+$\frac{1}{{x}^{2}}$-2a(x-$\frac{1}{x}$)+2a2,x∈[1,2].
(1)若a=1,求函数f(x)的最大值;
(2)求函数f(x)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.下列函数中,在(0,2)上为增函数的是(  )
A.y=log${\;}_{\frac{1}{2}}$xB.y=log2(x-1)C.y=log2$\frac{1}{x}$D.y=log2|x|

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知α是第三象限角,且f(α)=$\frac{sin(π-α)cos(2π-α)tan(-α+\frac{3π}{2})}{cot(-α-π)sin(-π-α)}$
(1)化简f(α);
(2)若cos(α-$\frac{3π}{2}$)=$\frac{1}{5}$,求f(α)的值;
(3)若α=-$\frac{16π}{3}$,求f(α)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.已知函数f(x)=log2(x2+2x-3),则函数f(1nx)的定义域是(  )
A.[e-3,e]B.(e-3,e)C.(-∞,e-3]∪[e,+∞)D.(0,e-3)∪(e,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.对于0.43和log40.3,下列说法正确的是(  )
A.0.43<log40.3B.0.43>log40.3C.0.43=log40.3D.不能确定

查看答案和解析>>

同步练习册答案