精英家教网 > 高中数学 > 题目详情

【题目】在直角坐标系中,,不在轴上的动点满足于点的中点。

(1)求点的轨迹的方程;

(2)设曲线轴正半轴的交点为,斜率为的直线交两点,记直线的斜率分别为,试问是否为定值?若是,求出该定值;若不是,请说明理由。

【答案】(1);(2)定值0

【解析】

1)解法一:设点的坐标为,可得出点,由,转化为,利用斜率公式计算并化简得出曲线的方程,并标出的范围;

解法二:设点,得出,由知点在圆上,再将点的坐标代入圆的方程并化简,可得出曲线的方程,并标出的范围;

2)先求出点的坐标,并设直线的方程为,设点,将直线的方程与曲线的方程联立,列出韦达定理, 利用斜率公式并代入韦达定理计算出来证明结论成立。

1)解法一:设点,因为轴,的中点,则

,所以,,即,化简得

所以,的方程为

解法二:依题意可知点的轨迹方程为

设点,因为轴,的中点,所以,

所以,即

所以,的方程为

2)依题意可知,设直线的方程为

,得

所以

所以

所以,为定值。

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知四边形为直角梯形,,且,点分别在线段上,使四边形为正方形,将四边形沿翻折至使.

(1)若线段中点为,求翻折后形成的多面体的体积;

(2)求直线与平面所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】将数字“”重新排列后得到不同的偶数个数为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】某商场举行有奖促销活动,顾客购买一定金额的商品后即可抽奖,每次抽奖都是从装有个红球、个白球的甲箱和装有个红球、个白球的乙箱中,各随机摸出一个球,在摸出的个球中,若都是红球,则获得一等奖;若只有个红球,则获得二等奖;若没有红球,则不获奖.

(1)求顾客抽奖次能获奖的概率;

(2)若某顾客有次抽奖机会,记该顾客在次抽奖中获一等奖的次数为,求的分布列和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,为等边三角形,,且中点.

(1)求证:平面平面

(2)若线段上存在点,使得二面角的大小为,求的值;

(3)在(2)的条件下,求点到平面的距离.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设全集U=R,集合A={x|1≤x<4},B={x|2a≤x<3-a}.

(1)若a=-2,求B∩A,B∩(UA);(2)A∪B=A,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】下列判断正确的是(

A. “若,则”的否命题为真命题

B. 函数的最小值为2

C. 命题“若,则”的逆否命题为真命题

D. 命题“”的否定是:“”。

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设有下面四个命题:

:若,则

:若,则

:若,则

:若,则

其中的真命题为( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,某园林单位准备绿化一块直径为BC的半圆形空地,ABC外的地方种草,ABC的内接正方形PQRS为一水池,其余的地方种花.若BCa,∠ABC,设ABC的面积为S1,正方形的面积为S2

(1)a表示S1S2

(2)当a固定,变化时,求取最小值时的角

查看答案和解析>>

同步练习册答案