精英家教网 > 高中数学 > 题目详情
19.下列四组函数中表示相等函数的是(  )
A.f(x)=$\sqrt{{x}^{2}}$,g(x)=xB.f(x)=x,g(x)=$\frac{{x}^{2}}{x}$
C.f(x)=lnx2,g(x)=2lnxD.f(x)=logaax(a>0,a≠1),g(x)=$\root{3}{{x}^{3}}$

分析 分别判断两个函数的定义域和对应法则是否一致,否则不是同一函数.

解答 解:A.f(x)=|x|,两个函数的对应法则不相同,所以A不是同一函数.
B.f(x)的定义域为R,而g(x)=$\frac{{x}^{2}}{x}$=x的定义域为(-∞,0)∪(0,+∞),所以定义域不同,所以B不是同一函数.
C.f(x)=lnx2=2lnx,x≠0,g(x)=2lnx,x>0,两个函数的定义域不相同,所以C不是同一函数.
D.f(x)=logaax(a>0,a≠1)=x,g(x)=$\root{3}{{x}^{3}}$=x,f(x)的定义域为R,而g(x)的定义域为R,两个函数的定义域和对应法则相同,所以D是同一函数.
故选D.

点评 本题主要考查判断两个函数是否为同一函数,判断的标准就是判断两个函数的定义域和对应法则是否一致,否则不是同一函数.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.点P(tan 2015°,cos 2015°)位于(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

10.若sin(x-$\frac{3}{4}$π)cos(x-$\frac{π}{4}$)=-$\frac{1}{4}$,则cos4x=$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.学校小卖部货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有(  )
A.7盒B.8盒3C.9盒D.10盒

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的右焦点为F1(1,0),离心率为e.设A,B为椭圆上关于原点对称的两点,AF1的中点为M,BF1的中点为N,原点O在以线段MN为直径的圆上.若直线AB的倾斜角α∈(0,$\frac{π}{3}$),则e的取值范围是[$\sqrt{3}$-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设函数f(x)=$\frac{a}{{2}^{x}}$+$\frac{{2}^{x}}{a}$的图象关于y轴对称,且a>0.
(1)求a的值;
(2)求f(x)在[0,2]的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设$f(x)=\left\{{\begin{array}{l}{π,x>0}\\{1,x=0}\\{-π,x<0}\end{array}}\right.,g(x)=\left\{{\begin{array}{l}{1,x为有理数}\\{{{log}_{\frac{1}{2}}}π,x为无理数}\end{array}}\right.$,则f(g(π))的值为(  )
A.1B.πC.D.没有正确答案

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知变量x,y满足约束条件Ω:$\left\{\begin{array}{l}y≤2\\ x+y≥1\\ x-y≤a\end{array}\right.$,若Ω表示的区域面积为4,则z=3x-y的最大值为7.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.实系数一元二次方程x2+ax+2b=0有两个根,一个根在区间(0,1)内,另一个根在区间(1,2)内,求:
(1)(a-1)2+(b-2)2的值域.
(2)$\frac{a+b-3}{a-1}$的取值范围.

查看答案和解析>>

同步练习册答案