分析 (1)由条件利用同角三角函数的基本关系、诱导公式,以及三角函数在各个象限中的符号,求得sin(-2π+α)的值.
(2)由条件利用同角三角函数的基本关系,求得2sin2x-sinxcosx+cos2x的值.
解答 解:(1)∵cos(α-π)=-cosα=-$\frac{5}{13}$,
∴cosα=$\frac{5}{13}$.
∵α是第四象限的角,
∴sin(-2π+α)=sinα=-$\sqrt{{1-cos}^{2}α}$=-$\frac{12}{13}$.
(2)∵tanx=2,
∴$2{sin^2}x-sinxcosx+{cos^2}x=\frac{{2{{sin}^2}x-sinxcosx+{{cos}^2}x}}{{{{sin}^2}x+{{cos}^2}x}}$=$\frac{{2{{tan}^2}x-tanx+1}}{tanx+1}=\frac{7}{5}$.
点评 本题主要考查同角三角函数的基本关系,以及三角函数在各个象限中的符号,属于基础题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (0,1) | B. | (0,2) | C. | (2,+∞) | D. | (1,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 单价x(元) | 8 | 8.2 | 8.4 | 8.6 | 8.8 | 9 |
| 销量y(件) | 90 | 84 | 83 | 80 | 75 | 68 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 0个 | B. | 1个 | C. | 2个 | D. | 3个 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com