精英家教网 > 高中数学 > 题目详情

【题目】已知某算法的算法框图如图所示,若将输出的(x,y)值依次记为(x1 , y1),(x2 , y2),…,(xn , yn),…,则程序结束时,共输出(x,y)的组数为(
A.1006
B.1007
C.1008
D.1009

【答案】B
【解析】解:根据程序框图的运算流程,模拟程序的运行,可得: 当n=1时,输出第1对,
当n=3时,输出第2对,

当n=2013时,输出最后一对为第1007对,此时,n=2015,满足条件n>2014,结束.
所以程序结束时,共输出(x,y)的组数为1007.
故选:B.
【考点精析】通过灵活运用程序框图,掌握程序框图又称流程图,是一种用规定的图形、指向线及文字说明来准确、直观地表示算法的图形;一个程序框图包括以下几部分:表示相应操作的程序框;带箭头的流程线;程序框外必要文字说明即可以解答此题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数).

(1)若,函数的最大值为,最小值为,求的值;

(2)当时,函数的最大值为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】为加快新能源汽车产业发展,推进节能减排,国家对消费者购买新能源汽车给予补贴,其中对纯电动乘用车补贴标准如下表:

新能源汽车补贴标准

车辆类型

续驶里程R(公里)

80≤R<150

150≤R<250

R≥250

纯电动乘用车

3.5万元/辆

5万元/辆

6万元/辆

某校研究性学习小组,从汽车市场上随机选取了M辆纯电动乘用车,根据其续驶里程R(单次充电后能行驶的最大里程)作出了频率与频数的统计表:

分组

频数

频率

80≤R<150

2

0.2

150≤R<250

5

x

R≥250

y

z

合计

M

1

(Ⅰ)求x,y,z,M的值;
(Ⅱ)若从这M辆纯电动乘用车中任选2辆,求选到的2辆车续驶里程都不低于150公里的概率;
(Ⅲ)若以频率作为概率,设X为购买一辆纯电动乘用车获得的补贴,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图是在竖直平面内的一个“通道游戏”,图中竖直线段和斜线段都表示通道,并且在交点处相通,假设一个小弹子在交点处向左或向右是等可能的.若竖直线段有一条的为第一层,有两条的为第二层,……,依此类推,现有一颗小弹子从第一层的通道里向下运动.则该小弹子落入第四层从左向右数第3个竖直通道的概率是( )

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】四个小动物换座位,开始是鼠、猴、兔、猫分别坐在 1,2,3,4 号位子上(如图), 第一次前后排动物互换座位,第二次左右列动物互换座位,.....,这样交替进行下去,那么第 2013 次互换座位后,小兔的座位对应的是( )

A. 编号 1 B. 编号 2 C. 编号 3 D. 编号 4

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

若曲线在点 处的切线与直线 垂直,求实数的值;

(Ⅱ)讨论函数 的单调性;

(Ⅲ)当 时,记函数 的最小值为 ,求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数f(x)=Asin(ωx+φ)+1(A>0,ω>0,|φ|< ),图象上有一个最低点是P(﹣ ,﹣1),对于f(x1)=1,f(x2)=3,|x1﹣x2|的最小值为 . (Ⅰ)若f(α+ )= ,且α为第三象限的角,求sinα+cosα的值;
(Ⅱ)讨论y=f(x)+m在区间[0, ]上零点的情况.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数 曲线在原点处的切线为 .

(1)证明:曲线轴正半轴有交点;

(2)设曲线轴正半轴的交点为,曲线在点处的切线为直线,求证:曲线上的点都不在直线的上方

(3)若关于的方程为正实数)有不等实根求证:

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知向量,设

(1)求函数的最小正周期;

(2)当时,求函数的最大值及最小值。

查看答案和解析>>

同步练习册答案