精英家教网 > 高中数学 > 题目详情
12.设i是虚数单位,若复数$\frac{4-ki}{1+i}$为纯虚数,则实数k的值为(  )
A.-4B.4C.$\frac{1}{4}$D.-$\frac{1}{4}$

分析 利用复数的运算法则、纯虚数的定义即可得出.

解答 解:复数$\frac{4-ki}{1+i}$=$\frac{(4-ki)(1-i)}{(1+i)(1-i)}$=$\frac{4-k-(4+k)i}{2}$为纯虚数,
则$\left\{\begin{array}{l}{\frac{4-k}{2}=0}\\{-\frac{4+k}{2}≠0}\end{array}\right.$,解得k=4.
故选:B.

点评 本题考查了复数的运算法则、纯虚数的定义,考查了推理能力与技能数列,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.设定义在区间(0,$\frac{π}{2}$)上的函数y=sin2x的图象与y=$\frac{1}{2}$cosx图象的交点横坐标为α,则tanα的值为(  )
A.$\sqrt{3}$B.$\frac{\sqrt{3}}{3}$C.$\frac{\sqrt{15}}{15}$D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.某学习小组由三名男生和三名女生组成,现从中选取参加学校座谈会的代表,规则是每次选取一人,依次选取,每人被选取的机会均等.
(I)若要求只选取两名代表,求选出的两名表都是男生或这都是女生的概率;
(Ⅱ)若选取只要女生入选,选取即结束;代表的数量X不限,求X的分布列和数学期望EX.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知数列{an}是公差为$\frac{1}{2}$的等差数列,Sn为{an}的前n项和,若S8=4S4,则a8=(  )
A.7B.$\frac{9}{2}$C.10D.$\frac{15}{4}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列命题中正确的是(  )
A.若ξ服从正态分布N(0,2),且P(ξ>2)=0.4,则P(0<ξ<2)=0.2
B.x=1是x2-x=0的必要不充分条件
C.直线ax+y+2=0与ax-y+4=0垂直的充要条件为a=±1
D.“若xy=0,则x=0或y=0”的逆否命题为“若x≠0或y≠0,则xy≠0”

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知数列{an},如果数列{bn}满足b1=a1,bn=an+an-1(n≥2,n∈N*).则称数列{bn}是数列{an}的“生成数列”.
(1)若数列{an}的通项为数列an=n,写出数列{an}的“生成数列”{bn}的通项公式.
(2)若数列{cn}的通项为数列cn=An+B,(A,B是常数),试问数列{cn}的“生成数列”{ln}是否是等差数列,请说明理由.
(3)若数列{dn}的通项公式为dn=2n+n,设数列{dn}的“生成数列”{pn}的前n项和为Tn,问是否存在自然数m满足(Tn-2014)(Tn-6260)≤0,若存在,请求出m的值,否则请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.一个袋中有若干个红球与白球,一次试验为从中摸出一个球并放回袋中,摸出红球概率为p,摸出白球概率为q,摸出红球加1分,摸出白球减1分,现记“n次试验总得分为Sn”.
(Ⅰ)当$p=q=\frac{1}{2}$时,记ξ=|S3|,求ξ的分布列及数学期望;
(Ⅱ)当$p=\frac{1}{3},q=\frac{2}{3}$时,求S8=2且Si≥0(i=1,2,3,4)的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设x,y满足约束条件$\left\{{\begin{array}{l}{x≥1}\\{x-2y≤0}\\{y-2≤0}\end{array}}\right.$,则z=x+2y-3的最大值为(  )
A.8B.5C.2D.1

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设i为虚数单位,复数z和ω满足zω+2iz一2iω+1=0.
(1)若z和ω满足$\overline{ω}$-z=2i,求z和ω的值;
(2)求证:如果|z|=$\sqrt{3}$,那么|ω-4i|的值是一个常数,并求这个常数.

查看答案和解析>>

同步练习册答案