精英家教网 > 高中数学 > 题目详情

【题目】已知椭圆Ey21m1)的离心率为,过点P10)的直线与椭圆E交于AB不同的两点,直线AA0垂直于直线x4,垂足为A0

(Ⅰ)求m的值;

(Ⅱ)求证:直线A0B恒过定点.

【答案】(Ⅰ)m4(Ⅱ)见解析

【解析】

)利用即可得解;

)设AB方程并与椭圆联立,利用韦达定理化简直线A0B的方程为点斜式形式,得到定点.

椭圆Ey21m1)的离心率为

m4

当直线ABx轴不重合时,设其方程为xmy+1Ax1y1),Bx2y2),

m2+4y2+2my30

因为A04y1),

所以直线A0B的方程为:yy1

y

直线A0B的方程为:y

当直线ABx轴重合时,直线A0Bx轴重合,

综上,直线A0B恒过定点(0

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数fxax12+x2exa0).

1)讨论函数fx)的单调性;

2)若关于x的方程fxa0存在3个不相等的实数根,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】选修4-4:坐标系与参数方程

在直角坐标系中,曲线的参数方程为为参数),以坐标原点为极点,以轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.

(1)求曲线的普通方程与曲线的直角坐标方程;

(2)若交于两点,点的极坐标为,求的值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数有两个零点.

1)求的取值范围;

2)记的极值点为,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系xOy下,曲线C1的参数方程为 为参数),曲线C1在变换T的作用下变成曲线C2

1)求曲线C2的普通方程;

2)若m>1,求曲线C2与曲线C3y=m|x|-m的公共点的个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

1)判断函数的奇偶性,并说明理由;

2)已知不等式上恒成立,求实数的最大值;

3)当时,求函数的零点个数.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知椭圆经过点,右焦点到直线的距离为.

1)求椭圆的标准方程;

2)定义两点所在直线的斜率,若四边形为椭圆的内接四边形,且相交于原点,且,求证:.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】数列 满足: 或1().对任意,都存在,使得.,其中 且两两不相等.

(I)若.写出下列三个数列中所有符合题目条件的数列的序号;

①1,1,1,2,2,2;②1,1,1,1,2,2,2,2;③1,l,1,1,1,2,2,2,2

(Ⅱ)记.若,证明:

(Ⅲ)若,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在三棱锥中,底面是线段上一点,且.三棱锥的各个顶点都在球表面上,过点作球的截面,若所得截面圆的面积的最大值与最小值之差为,则球的表面积为(

A.B.C.D.

查看答案和解析>>

同步练习册答案