精英家教网 > 高中数学 > 题目详情

设函数f(x)=x3+bx2+cx(x∈R),已知g(x)=f(x)-f′(x)是奇函数.
(1)求b、c的值;
(2)求g(x)极值.

解:(1)f′(x)=3x2+2bx+c,g(x)=f(x)-f′(x)=x3+bx2+cx-3x2-2bx-c=x3+(b-3)x2+(c-2b)x-c,
因为g(x)为奇函数,所以g(-x)=-g(x),
即-x3+(b-3)x2-(c-2b)x-c=-[x3+(b-3)x2+(c-2b)x-c],
也即2(b-3)x2=2c,
所以b=3,c=0.
(2)由(1)知,g(x)=x3-6x,
g′(x)=3x2-6=3(x+)(x-),令g′(x)=0,得x=-或x=
当x<-或x>时,g′(x)>0,当-<x<时,g′(x)<0,
所以g(x)在(-∞,-),(,+∞)上单调递增,在(-)上单调递减,
所以当x=-时,g(x)取得极大值g(-)=4;当x=时,g(x)取得极小值g()=-4
分析:(1)先求出f′(x),从而得到g(x),由g(x)为奇函数,可得g(-x)=-g(x)总成立,从而可求出b,c值;
(2)由(1)写出g(x),求g′(x),由导数求出函数g(x)的单调区间,由此可得到极值.
点评:本题考查导数与函数的极值及函数的奇偶性,可导函数f(x)在点x0处取得极值的充要条件是f′(x0),且导数在x0左右两侧异号.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

18、设函数f(x)=x3-3ax2+3bx的图象与直线12x+y-1=0相切于点(1,-11).
(Ⅰ)求a,b的值;
(Ⅱ)讨论函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2+x+1,a∈R.
(1)若x=1时,函数f(x)取得极值,求函数f(x)的图象在x=-1处的切线方程;
(2)若函数f(x)在区间(
12
,1)
内不单调,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3+ax2-a2x+5(a>0)
(1)当函数f(x)有两个零点时,求a的值;
(2)若a∈[3,6],当x∈[-4,4]时,求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3-3x2-9x-1.求:
(Ⅰ)函数在(1,f(1))处的切线方程;
(Ⅱ)函数f(x)的单调区间.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=x3•cosx+1,若f(a)=5,则f(-a)=
 

查看答案和解析>>

同步练习册答案