精英家教网 > 高中数学 > 题目详情
如图,在△ABC中,∠ACB=90°,∠A=60°,AC=a,作斜边AB边中线CD,得到第一个三角形ACD;DE⊥BC于点E,作Rt△BDE斜边DB上中线EF,得到第二个三角形DEF;依此作下去,则第4个三角形的面积等于
3
a2
256
3
a2
256
分析:根据直角三角形斜边上的中线等于斜边的一半可得CD=AD,然后判定出△ACD是等边三角形,同理可得被分成的第二个、第三个…第n个三角形都是等边三角形,然后根据等边三角形的面积公式求解即可.
解答:解:∵∠ACB=90°,CD是斜边AB上的中线,
∴CD=AD,
∵∠A=60°,
∴△ACD是等边三角形,
同理可得,被分成的第二个、第三个…第n个三角形都是等边三角形,
∵CD是AB的中线,EF是DB的中线,…,∵CD是AB的中线,EF是DB的中线,…,
∴第一个等边三角形的边长CD=DB=
1
2
AB=AC=a,
第二个等边三角形的边长EF=
1
2
DB=
1
2
a,

第4个等边三角形的边长为
1
23
a=
1
8
a

所以,第4个三角形的面积=
1
2
×(
1
8
a)2×
3
2
=
3
256
a2

故答案为:
3
a2
256
点评:本题考查了直角三角形斜边上的中线等于斜边的一半的性质,等边三角形的判定与性质.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,已知∠ABC=90°,AB上一点E,以BE为直径的⊙O恰与AC相切于点D,若AE=2cm,
AD=4cm.
(1)求:⊙O的直径BE的长;
(2)计算:△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:

精英家教网如图,在△ABC中,D是边AC上的点,且AB=AD,2AB=
3
BD,BC=2BD,则sinC的值为(  )
A、
3
3
B、
3
6
C、
6
3
D、
6
6

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,设
AB
=a
AC
=b
,AP的中点为Q,BQ的中点为R,CR的中点恰为P.
(Ⅰ)若
AP
=λa+μb
,求λ和μ的值;
(Ⅱ)以AB,AC为邻边,AP为对角线,作平行四边形ANPM,求平行四边形ANPM和三角形ABC的面积之比
S平行四边形ANPM
S△ABC

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,∠B=45°,D是BC边上的一点,AD=5,AC=7,DC=3.
(1)求∠ADC的大小;
(2)求AB的长.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在△ABC中,已知
BD
=2
DC
,则
AD
=(  )

查看答案和解析>>

同步练习册答案