精英家教网 > 高中数学 > 题目详情
19.在△ABC中,三内角A,B,C的对边分别为a,b,c,面积为S,若S+a2=(b+c)2,则cosA等于-$\frac{15}{17}$.

分析 由已知利用三角形面积公式,余弦定理,同角三角函数基本关系式即可化简可得17cos2A+32cosA+15=0,进而可求cosA的值.

解答 解:∵由题意可得:S=$\frac{1}{2}$bcsinA=(b+c)2-a2=b2+c2-a2+2bc,
又∵b2+c2-a2=2bccosA,
∴$\frac{1}{2}$bcsinA=2bccosA+2bc,整理可得:sinA=4cosA+4,两边平方可得:1-cos2A=16cos2A+16+32cosA,
∴整理可得:17cos2A+32cosA+15=0,
∴解得:cosA=-$\frac{15}{17}$,或-1(舍去).
故答案为:-$\frac{15}{17}$.

点评 本题主要考查了三角形面积公式,余弦定理,同角三角函数基本关系式在解三角形中的应用,考查了计算能力和转化思想,灵活应用相关公式是解题的关键,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

9.如图所示:O、A、B是平面上的三点,设向量$\overrightarrow{OA}$=$\overrightarrow{a}$,$\overrightarrow{OB}$=$\overrightarrow{b}$,且|$\overrightarrow{a}$|=3,|$\overrightarrow{b}$|=2在平面AOB上,若P为线段AB的中垂线上任意一点,则$\overrightarrow{OP}$•($\overrightarrow{a}$-$\overrightarrow{b}$)的值是(  )
A.$\frac{5}{2}$B.5C.3D.$\frac{3}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.设椭圆的两个焦点分别为F1,F2,过F2作椭圆长轴的垂线交椭圆于P点,若△F1PF2为等腰三角形,离心率是(  )
A.$\frac{{\sqrt{2}}}{2}$B.$\frac{{\sqrt{2}-1}}{2}$C.2-$\sqrt{2}$D.$\sqrt{2}-1$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知a>0,b>0,且4a-b≥2,则$\frac{1}{a}-\frac{1}{b}$的最大值为$\frac{1}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.等差数列{an}其前13项和为39,则a6+a7+a8=(  )
A.18B.12C.9D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.在△ABC中,角A,B,C的对边分别为a,b,c,且2cos2$\frac{A-B}{2}$cosB-sin(A-B)sinB+cos(A+C)=-$\frac{3}{5}$,a=4$\sqrt{2}$,b=5,则向量$\overrightarrow{BA}$在$\overrightarrow{BC}$方向上的投影为(  )
A.$\frac{{\sqrt{2}}}{2}$B.$-\frac{{\sqrt{2}}}{2}$C.$\frac{3}{5}$D.$-\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.数据 x1,x2,…,x8平均数为6,标准差为2,若数据 3x1-5,3x2-5,…,3x8-5的平均数为a,方差为b,则a+b=49.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.甲乙两组数学兴趣小组的同学举行了赛前模拟考试,成绩记录如下(单位:分):
甲:79,81,82,78,95,93,84,88
乙:95,80,92,83,75,85,90,80
(1)画出甲、乙两位学生成绩的茎叶图,;
(2)计算甲、乙两组同学成绩的平均分和方差,并从统计学的角度分析,哪组同学在这次模拟考试中发挥比较稳定;
(参考公式:样本数据x1,x2,…,xn的标准差:s=$\sqrt{\frac{1}{n}[({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}]}$,其中$\overline{x}$为样本平均数)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.给出下列关系:①$\frac{1}{2}$∈Z;②$\sqrt{2}$∈Q;③|-3|∈N+;④3.14∈Q;⑤0∈∅,其中正确的个数为(  )
A.1B.2C.3D.4

查看答案和解析>>

同步练习册答案