精英家教网 > 高中数学 > 题目详情

【题目】设函数f(x)=emx+x2-mx.

(1)证明:f(x)在(-∞,0)上单调递减,在(0,+∞)上单调递增;

(2)若对于任意x1,x2∈[-1,1],都有|f(x1)-f(x2)|≤e-1,求m的取值范围.

【答案】(1) 见解析(2) [-1,1].

【解析】试题分析:(1利用说明函数为增函数,利用说明函数为减函数要注意参数的讨论;(2)由(1)知,对任意的 单调递减,在单调递增,则恒成立问题转化为最大值和最小值问题.从而求得的取值范围.

试题解析:(1)证明:∵

.

,则当时,

时,

,则当时,

时,

∴函数上单调递减,在上单调递增.

(2)由(1)知,对任意的 上单调递减,在上单调递增,故处取得最小值.所以对于任意 的充要条件是

设函数,则

时, ;当时,

上单调递减,在上单调递增.

又∵

∴当时,

时, ,即①式成立;

时, ,即

时, ,即

综上, 的取值范围是

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知函数f(x)x2ex (x0)g(x)x2ln(xa)图象上存在关于y轴对称的点a的取值范围是(  )

A. () B. ()

C. ( ) D. ( )

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】中, 的中点, 是线段上一个动点,且,如图所示,沿翻折至,使得平面平面.

(1)当时,证明: 平面

(2)是否存在,使得三棱锥的体积是?若存在,求出的值;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知函数

,求函数的极值;

(Ⅱ)若,,,使得),求实数的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知曲线C1上任意一点M到直线ly=4的距离是它到点F(0,1)距离的2倍;曲线C2是以原点为顶点,F为焦点的抛物线.

(1)求C1C2的方程;

(2)设过点F的直线与曲线C2相交于AB两点,分别以AB为切点引曲线C2的两条切线l1l2,设l1l2相交于点P,连接PF的直线交曲线C1CD两点,求的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】“过大年,吃水饺”是我国不少地方过春节的一大习俗,2018年春节前夕, 市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标.

(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中的数据用该组区间的中点值作代表);

(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;

②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.

附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为

②若,则

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】已知实数及函数

(1)若,求的单调区间;

(2)设集合,使上恒成立的的取值范围记作集合,求证: 的真子集.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】如图,在四棱锥中,棱底面,且, , , 的中点.

(1)求证: 平面

(2)求三棱锥的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】平面直角坐标系中,圆的圆心为.已知点,且为圆上的动点,线段的中垂线交于点.

(Ⅰ)求点的轨迹方程;

(Ⅱ)设点的轨迹为曲线,抛物线 的焦点为. 是过点互相垂直的两条直线,直线与曲线交于 两点,直线与曲线交于 两点,求四边形面积的取值范围.

查看答案和解析>>

同步练习册答案