精英家教网 > 高中数学 > 题目详情
精英家教网如图,在多面体ABCDEF中,四边形ABCD是矩形,AB∥EF,∠EAB=90°,AB=2,AD=AE=EF=1,平面ABFE⊥平面ABCD.
(1)若点O为线段AC的中点,求证:OF∥平面ADE;
(2)求四面体ACEF的体积.
分析:(1)要证明OF∥平面ADE,关键要在平面ADE中找到一条可能与OF平行的直线,则△EAD边AD上的中线可能符合要求,添加辅助线后,利用平行四边形的性质,即可得到结论.
(2)根据面面平行的性质定理,BC即为平面ABFE上的高,求出△AEF的面积,并将其代入棱锥体积公式,即可得到答案.
解答:证明:(1)∵平面ABFE⊥平面ABCD,∠EAB=90°,即EA⊥AB
∴EA⊥平面ABCD.
作EH∥EA交AB于H,
∵AB=2,AD=AE=EF=1,
∴H为AB的中点
连接OH,则OH为三角形ABC的中位线,
∴OH∥BC∥AD
又由OH∩FH=H
∴平面FHO∥平面EAD,OH?平面FHO
∴OF∥平面ADE;
解:(2)S△AEF=
1
2
•AE•EF=
1
2

∵平面ABEF⊥平面ABCD
即BC⊥AB
而平面ABEF∩平面ABCD=AB
∴BC⊥平面ABFE
∴VC-AEF=
1
3
•S△AEF•BC=
1
6
点评:本题考查的知识点是棱锥的体积公式,直线 与平面平行的判定,证明线面平行,找到面内与已知直线平等的直线是关键,求三棱锥的体积,确定底面和高是关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1
.
BB1AB=AC=AA1=
2
2
BC,B1C1
.
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)求证:AB1∥平面A1C1C;
(3)求二面角C1-A1C-A的余弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB
B1C1
.
.
1
2
BC
,二面角A1-AB-C是直二面角.
(Ⅰ)求证:AB1∥平面 A1C1C;
(Ⅱ)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•青岛二模)如图,在多面体ABC-A1B1C1中,四边形ABB1A1是正方形,AC=AB=1,A1C=A1B,B1C1∥BC,B1C1=
12
BC.
(Ⅰ)求证:面A1AC⊥面ABC;
(Ⅱ)求证:AB1∥面A1C1C.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•合肥一模)如图,在多面体ABC-A1B1C1中,AA1⊥平面ABC,AA1⊥平面ABC,AA1∥=BB1,AB=AC=AA1=
2
2
BC
,B1C1∥=
1
2
BC

(1)求证:A1B1⊥平面AA1C;
(2)若D是BC的中点,求证:B1D∥平面A1C1C;
(3)若BC=2,求几何体ABC-A1B1C1的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•郑州二模)如图,在多面体ABC-A1B1C1中,四边形A1ABB1是正方形,AB=AC,BC=
2
AB,B1C1
.
1
2
BC
,二面角A1-AB-C是直二面角.
(I)求证:A1B1⊥平面AA1C; 
(II)求证:AB1∥平面 A1C1C;
(II)求BC与平面A1C1C所成角的正弦值.

查看答案和解析>>

同步练习册答案