精英家教网 > 高中数学 > 题目详情
16.已知集合A={x|x2-5x-6<0},集合B={x|6x2-5x+1≥0},集合C={x|(x-m)(x-m-9)<0}
(1)求A∩B;
(2)若A⊆C,求实数 m的取值范围.

分析 (1)由A={x|x2-5x-6<0}={x|-1<x<6},集合B={x|6x2-5x+1≥0}={x|x≥$\frac{1}{2}$,或x≤$\frac{1}{3}$},能求出A∩B.
(2)由A⊆C,建立不等式组,能求出m的取值范围.

解答 解:(1)∵A={x|x2-5x-6<0}={x|-1<x<6},
集合B={x|6x2-5x+1≥0}={x|x≥$\frac{1}{2}$,或x≤$\frac{1}{3}$},
∴A∩B={x|-1<x≤$\frac{1}{3}$,或$\frac{1}{2}$≤x<6}.
(2)∵集合C={x|(x-m)(x-m-9)<0}={x|m<x<m+9},A⊆C,
∴$\left\{\begin{array}{l}{m+9≥6}\\{m≤-1}\end{array}\right.$,
解得-3≤m≤-1.
∴m的取值范围是{m|-3≤m≤-1}.

点评 本题考查了不等式的解法、集合运算性质,考查了推理能力与计算能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

6.如图,圆O的直径AB=4,直线CE和圆O相切于点C,AD⊥CE于D,若∠ABC=30°,则AD的长为1.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知角α的终边过点P(8m,3),且cosα=-$\frac{4}{5}$,则m的值为(  )
A.$-\frac{1}{2}$B.$\frac{1}{2}$C.$-\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.函数f($\sqrt{x+1}$)的定义域为[0,3],则f(x)的定义域为[1,2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知集合A={x|1+2x-3x2>0},B={x|2x(4x-1)<0},则A∩(∁RB)=$(-\frac{1}{3},0]∪[\frac{1}{4},1)$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.设函数f(x)=ex,g(x)=kx+1.
(I)求函数y=f(x)-(x+1)的最小值;
(II)证明:当k>1时,存在x0>0,使对于任意x∈(0,x0)都有f(x)<g(x);
(III)若存在实数m使对任意x∈(0,m)都有|f(x)-g(x)|>x成立,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.如图:已知BD为△ABC的中线,若AB=3,BD=BC,则△ABC的面积的最大值是3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

5.设i是虚数单位,则复数(1+i)(1+2i)=(  )
A.3+3iB.3+iC.-1+3iD.-1+i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.“①正方形的对角线相等;②矩形的对角线相等;③正方形是矩形”,根据“三段论”推理形式,则作为大前提、小前提、结论的分别为(  )
A.①②③B.③①②C.②③①D.②①③

查看答案和解析>>

同步练习册答案