精英家教网 > 高中数学 > 题目详情
20.(x-$\frac{1}{x}$)6展开式中x2的系数为(  )
A.-15B.15C.-20D.20

分析 利用二项式展开式的通项公式,令x的指数为2求出展开式中x2的系数.

解答 解:(x-$\frac{1}{x}$)6展开式的通项公式为
Tr+1=${C}_{6}^{r}$•x6-r•${(-\frac{1}{x})}^{r}$=${C}_{6}^{r}$•(-1)r•x6-2r
令6-2r=2,解得r=2;
∴(x-$\frac{1}{x}$)6展开式中x2的系数为
${C}_{6}^{2}$•(-1)2=15.
故选:B.

点评 本题考查了二项式展开式的通项公式应用问题,是基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

10.某班级有一个7人的小组,现选出其中3人调整座位且3人座位都有变动,其余4人座位不变,则不同的调整方案有(  )
A.35种B.70种C.210种D.105种

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.设数列{an}满足a1=1,an+1•an=2n(n∈N*),若Sn为数列前n项和,则S2016=(  )
A.22016-1B.3•21008-3C.22009-3D.22010-3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.《九章算术》是我国古代的数学名著,体现了古代劳动人民的数学智慧,其中第六章“均输”中,有一竹节容量问题,某人根据这一思想,设计了如图所示的程序框图,若输出m的值为35,则输入的a的值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE,设PA=1,AD=2.
(1)求平面BPC的法向量;
(2)求二面角B-PC-A的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

5.函数f(x)=ax-xlna(a>0且a≠1)的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.设函数f(x)=$\sqrt{{e}^{x}+ax-2}$,其中a>0,若存在实数x0∈[1,2],使f[f(x0)]=x0,则a的取值范围是(0,3-e].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知数列{an}前n项和为Sn,且满足a1=1,4Sn=anan+1+1.
(1)计算a2、a3、a4的值,并猜想{an}的通项公式;
(2)设bn=$\frac{1}{{a}_{n}•{a}_{n+1}}$,求数列{bn}的前n项和Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知椭圆${C_1}:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$与椭圆${C_2}:\frac{x^2}{4}+{y^2}=1$有相同的离心率,且经过点P(2,-1).
( I)求椭圆C1的标准方程;
( II)设点Q为椭圆C2的下顶点,过点P作两条直线分别交椭圆C1于A、B两点,若直线PQ平分∠APB,求证:直线AB的斜率为定值,并且求出这个定值.

查看答案和解析>>

同步练习册答案